Menu Close

Let-x-denote-the-greatest-integer-x-Then-the-number-of-ordered-pair-x-y-where-x-and-y-are-positive-integers-less-than-30-such-that-x-2-2x-3-y-4-4y-5-7x-6-2




Question Number 118930 by Ar Brandon last updated on 20/Oct/20
Let [x] denote the greatest integer ≤x. Then the  number of ordered pair (x,y), where x and y are  positive integers less than 30 such that              [(x/2)]+[((2x)/3)]+[(y/4)]+[((4y)/5)]=((7x)/6)+((21y)/(20))  is  (A) 1              (B) 2              (C) 3              (D) 4
Let[x]denotethegreatestintegerx.Thenthenumberoforderedpair(x,y),wherexandyarepositiveintegerslessthan30suchthat[x2]+[2x3]+[y4]+[4y5]=7x6+21y20is(A)1(B)2(C)3(D)4
Answered by floor(10²Eta[1]) last updated on 20/Oct/20
((7x)/6)+((21y)/(20))∈N  ⇒((70x+63y)/(60))∈N  ⇒70x+63y≡10x+3y≡0(mod60)  60∣10x+3y  ⇒390>10x+3y≥60  10x+3y∈{60, 120, 180, 240, 300, 360}  10x+3y=60z, 1≤z≤6  the solution to this diophantine equation is:  (x, y)=(6z−3k, 10k), k∈Z  ⇒0<10k<30⇒k=1 or k=2  ⇒y=10  x∈{3, 9, 15, 21, 27}  y=20  x∈{6, 12, 18, 24}  after checking that solutions on the  original equation the only one that works  are when y=20⇒x∈{6, 12, 18, 24}  Ans: D
7x6+21y20N70x+63y60N70x+63y10x+3y0(mod60)6010x+3y390>10x+3y6010x+3y{60,120,180,240,300,360}10x+3y=60z,1z6thesolutiontothisdiophantineequationis:(x,y)=(6z3k,10k),kZ0<10k<30k=1ork=2y=10x{3,9,15,21,27}y=20x{6,12,18,24}aftercheckingthatsolutionsontheoriginalequationtheonlyonethatworksarewheny=20x{6,12,18,24}Ans:D
Commented by Ar Brandon last updated on 21/Oct/20
Thank you Sir

Leave a Reply

Your email address will not be published. Required fields are marked *