Menu Close

let-x-gt-0-and-F-x-0-arctan-xt-2-1-t-2-dt-1-find-a-simple-form-of-F-x-2-find-the-value-of-0-arctan-2t-2-1-t-2-dt-3-find-the-value-of-0-arctan-3t-2-1-t-2




Question Number 38211 by prof Abdo imad last updated on 22/Jun/18
let x>0 and F(x)= ∫_0 ^(+∞)  ((arctan(xt^2 ))/(1+t^2 ))dt  1) find a simple form of F(x)  2)find the value of ∫_0 ^∞    ((arctan(2t^2 ))/(1+t^2 ))dt  3)find the value of ∫_0 ^∞ ((arctan(3t^2 ))/(1+t^2 ))dt.
letx>0andF(x)=0+arctan(xt2)1+t2dt1)findasimpleformofF(x)2)findthevalueof0arctan(2t2)1+t2dt3)findthevalueof0arctan(3t2)1+t2dt.
Commented by math khazana by abdo last updated on 26/Jun/18
1) we have F(x)=(1/2) ∫_(−∞) ^(+∞)  ((arctan(xt^2 ))/(1+t^2 ))dt but  ∫_(−∞) ^(+∞)   ((arctan(xt^2 ))/(1+t^2 ))dt=  π{ arctan((√(2x)) +1) +arctan((√(2x)) −1) −arctanx}  ⇒  F(x)=(π/2){ arctan((√(2x)) +1)+arctan((√(2x)) −1)−arctan(x)}  2) ∫_0 ^∞    ((arctan(2t^2 ))/(1+t^2 ))dt =F(2)  =(π/2){arctan(3) +arctan(1) −arctan(2)}  =(π/2){ arctan(3)−arctan(2)}+(π^2 /8)  3) ∫_0 ^∞   ((arctan(3t^2 ))/(1+t^2 ))dt =F(3)  =(π/2){ arctan((√6) +1)+arctan((√6)−1)arctan(3)}.
1)wehaveF(x)=12+arctan(xt2)1+t2dtbut+arctan(xt2)1+t2dt=π{arctan(2x+1)+arctan(2x1)arctanx}F(x)=π2{arctan(2x+1)+arctan(2x1)arctan(x)}2)0arctan(2t2)1+t2dt=F(2)=π2{arctan(3)+arctan(1)arctan(2)}=π2{arctan(3)arctan(2)}+π283)0arctan(3t2)1+t2dt=F(3)=π2{arctan(6+1)+arctan(61)arctan(3)}.
Commented by math khazana by abdo last updated on 26/Jun/18
F(3)=(π/2){ arctan((√6) +1)+arctan((√6) −1)−arctan(3)}
F(3)=π2{arctan(6+1)+arctan(61)arctan(3)}

Leave a Reply

Your email address will not be published. Required fields are marked *