Menu Close

let-x-gt-0-calculate-f-x-0-e-t-sin-xt-dt-




Question Number 42188 by maxmathsup by imad last updated on 19/Aug/18
let x>0   calculate  f(x) =∫_0 ^(+∞)   e^(−t)  ∣sin(xt)∣ dt
letx>0calculatef(x)=0+etsin(xt)dt
Commented by maxmathsup by imad last updated on 23/Aug/18
changement xt =u give  f(x) =∫_0 ^∞   e^(−(u/x))  ∣sin(u)∣(du/x)  =(1/x) ∫_0 ^∞  e^(−(u/x))  ∣sin(u)∣du ⇒xf(x)=Σ_(n=0) ^∞   ∫_(nπ) ^((n+1)π)  e^(−(u/x))  ∣sinu∣ du  =_(u =nπ +t)   Σ_(n=0) ^∞   ∫_0 ^π   e^(−((nπ+t)/x))   ∣sin(nπ+t)∣dt  =Σ_(n=0) ^∞   ∫_0 ^π   e^(−((nπ)/x))  e^(t/x)   sint dt =Σ_(n=0) ^∞   e^(−((nπ)/x))   ∫_0 ^π   e^(t/x)  sint dt but  ∫_0 ^π   e^(t/x)  sint dt = Im( ∫_0 ^π   e^((t/x)+it)  dt) and   ∫_0 ^π   e^(((1/x)+i)t) dt  =[(1/((1/x)+i)) e^(((1/x)+i)t) ]_0 ^π  =(x/(1+xi)){ e^((π/x) +iπ)  −1}=((x(1−xi))/(1+x^2 )){−e^(π/x)  −1}  =((x(−1+xi)(1+e^(π/x) ))/(1+x^2 )) =((1+e^(π/x) )/(1+x^2 ))(−x +x^2 i) ⇒∫_0 ^π  e^(t/x)  sint dt=(x^2 /(1+x^2 ))(1+e^(π/x) ) ⇒  xf(x)=(x^2 /(1+x^2 ))(1+e^(π/x) )Σ_(n=0) ^∞  (e^(−(π/x)) )^n  =(x^2 /(1+x^2 ))(1+e^(π/x) ) (1/(1−e^(−(π/x)) )) ⇒  xf(x) =(x^2 /(1+x^2 )) ((1+e^(π/x) )/(1−e^(−(π/x)) ))  ⇒ f(x)= (x/(1+x^2 )) ((1+e^(π/x) )/(1−e^(−(π/x)) )) .
changementxt=ugivef(x)=0euxsin(u)dux=1x0euxsin(u)duxf(x)=n=0nπ(n+1)πeuxsinudu=u=nπ+tn=00πenπ+txsin(nπ+t)dt=n=00πenπxetxsintdt=n=0enπx0πetxsintdtbut0πetxsintdt=Im(0πetx+itdt)and0πe(1x+i)tdt=[11x+ie(1x+i)t]0π=x1+xi{eπx+iπ1}=x(1xi)1+x2{eπx1}=x(1+xi)(1+eπx)1+x2=1+eπx1+x2(x+x2i)0πetxsintdt=x21+x2(1+eπx)xf(x)=x21+x2(1+eπx)n=0(eπx)n=x21+x2(1+eπx)11eπxxf(x)=x21+x21+eπx1eπxf(x)=x1+x21+eπx1eπx.

Leave a Reply

Your email address will not be published. Required fields are marked *