Menu Close

let-x-gt-0-y-gt-0-z-gt-0-prove-that-x-2-yz-y-2-xz-z-2-xy-3-




Question Number 42492 by maxmathsup by imad last updated on 26/Aug/18
let x>0 ,y>0,z>0   prove that  (x^2 /(yz)) +(y^2 /(xz)) +(z^2 /(xy)) ≥3 .
letx>0,y>0,z>0provethatx2yz+y2xz+z2xy3.
Answered by tanmay.chaudhury50@gmail.com last updated on 26/Aug/18
(x^3 /(xyz))+(y^3 /(xyz))+(z^3 /(xyz))−3  ((x^3 +y^3 +z^3 −3xyz)/(xyz))  (((x+y+z)(x^2 +y^2 +z^2 −xy−yz−zx))/(xyz))  (((x+y+z){(x−y)^2 +(y−z)^2 +(z−x)^2 })/(2xyz))  +ve   (since x>0   y>0    z>0)  so  (x^2 /(yz))+(y^2 /(xz))+(z^2 /(xy))>3 proved  now if (x=y=z  then (x^2 /(yz))+(y^2 /(xz))+(z^2 /(xy))−3=0  hence (x^2 /(yz))+(y^2 /(zx))+(z^2 /(xy))≥3  proved
x3xyz+y3xyz+z3xyz3x3+y3+z33xyzxyz(x+y+z)(x2+y2+z2xyyzzx)xyz(x+y+z){(xy)2+(yz)2+(zx)2}2xyz+ve(sincex>0y>0z>0)sox2yz+y2xz+z2xy>3provednowif(x=y=zthenx2yz+y2xz+z2xy3=0hencex2yz+y2zx+z2xy3proved
Commented by math khazana by abdo last updated on 27/Aug/18
correct sir tanmay thanks.
correctsirtanmaythanks.
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Aug/18
its ok sir
itsoksir
Answered by behi83417@gmail.com last updated on 26/Aug/18
(x^2 /(yz))+(y^2 /(xz))+(z^2 /(xy))≥3(((x^2 /(yz)).(y^2 /(xz)).(z^2 /(xy))))^(1/3) =3(1)^(1/3) =3.
x2yz+y2xz+z2xy3x2yz.y2xz.z2xy3=313=3.

Leave a Reply

Your email address will not be published. Required fields are marked *