Menu Close

Let-X-is-natural-number-Multification-of-its-digits-is-X-2-97X-2020-Find-the-value-of-X-maximum-X-minimum-




Question Number 25230 by naka3546 last updated on 06/Dec/17
Let  X  is natural  number .  Multification  of  its  digits  is  X^2  − 97X + 2020 .  Find  the  value  of  X_(maximum)   +  X_(minimum)   .
LetXisnaturalnumber.MultificationofitsdigitsisX297X+2020.FindthevalueofXmaximum+Xminimum.
Answered by Rasheed.Sindhi last updated on 07/Dec/17
Let X=(x_(n-1) x_(n-2) ...x_1 x_0 )_(10) , where x_(n-1) ,  x_(n-2) ,...,x_2 ,x_1 are decimal digits.  X=x_(n-1) (10)^(n-1) +x_(n-2) (10)^(n-2) +...x_1 (10)^1 +x_0    x_(n-1) .x_(n-2) ...x_1 .x_0 =X^2  − 97X + 2020  An n-digit number_(max) =99...9^(n nines)   So              X^2 −97X+2020^(multiplication of digis) ≤9^n   For 1-digit X^2 −97X+2020≤9                            X≤66,X≤30⇒X≤66  The number is upto 2digit   For 2-digit X^2 −97X+2020≤81                            X≤28, X≤68⇒X≤68...(i)  The number is upto 2digit.  For 3-digit X^2 −97X+2020≤729                          X≤15,X≤81⇒X≤81  The number cannot be 3digit.  For 4-digit X^2 −97X+2020≤6561                         X≤−34,X≤131⇒X≤131  The number cannot be 4digit.  ......  ....  ..  It seems that the number cannot  consist of more than 2-digit.  If X is two digit number.  Let the number is 10a+b  ab=(10a+b)^2 −97(10a+b)+2020   ⇒100a^2 +19ab+b^2 −970a−97b+2020=0...(ii)   Also  from (i)   10a+b≤68⇒1≤a≤6 ∧ 0≤b≤8  a=1⇒    (ii)⇒100+19b+b^2 −970−97b+2020=0      b^2 −78b+1150=0 [No integer b]  a=1,2,3,4,5 ⇒value of b is inadmissble  But for a=6⇒   (ii)⇒3600+114b+b^2 −5820−97b+2020=0           b^2 +17b−200=0⇒b=8  Hence the single 2-digit number is 68  Verify that     6×8=68^2 −97(68)+2020  X_(max) +X_(min) =68+68=136
LetX=(xn1xn2x1x0)10,wherexn1,xn2,,x2,x1aredecimaldigits.X=xn1(10)n1+xn2(10)n2+x1(10)1+x0xn1.xn2x1.x0=X297X+2020Anndigitnumbermax=999nninesSoX297X+2020multiplicationofdigis9nFor1digitX297X+20209X66,X30X66Thenumberisupto2digitFor2digitX297X+202081X28,X68X68(i)Thenumberisupto2digit.For3digitX297X+2020729X15,X81X81Thenumbercannotbe3digit.For4digitX297X+20206561X34,X131X131Thenumbercannotbe4digit....Itseemsthatthenumbercannotconsistofmorethan2digit.IfXistwodigitnumber.Letthenumberis10a+bab=(10a+b)297(10a+b)+2020100a2+19ab+b2970a97b+2020=0(ii)Alsofrom(i)10a+b681a60b8a=1(ii)100+19b+b297097b+2020=0b278b+1150=0[Nointegerb]a=1,2,3,4,5valueofbisinadmissbleButfora=6(ii)3600+114b+b2582097b+2020=0b2+17b200=0b=8Hencethesingle2digitnumberis68Verifythat6×8=68297(68)+2020Xmax+Xmin=68+68=136
Commented by Rasheed.Sindhi last updated on 07/Dec/17
^• Sir mrW1  ThankSsss for correction.  ^• Mr. naka,  I think there′s only one such number    X=68   6×8=68^2 −97(68)+2020  ?   please confirm this.  I will try to complete my answer  after your confirmation.
SirmrW1ThankSsssforcorrection.Mr.naka,IthinktheresonlyonesuchnumberX=686×8=68297(68)+2020?pleaseconfirmthis.Iwilltrytocompletemyanswerafteryourconfirmation.
Commented by mrW1 last updated on 07/Dec/17
sir, please check:  for n−digit numbers   So              X^2 −97X+2020^(multiplication of digis) ≤9^n
sir,pleasecheck:forndigitnumbersSoX297X+2020multiplicationofdigis9n
Commented by mrW1 last updated on 07/Dec/17
great work!
greatwork!
Commented by Rasheed.Sindhi last updated on 07/Dec/17
THANKS a LOT  Sir!
THANKSaLOTSir!

Leave a Reply

Your email address will not be published. Required fields are marked *