Menu Close

let-x-lt-1-calculate-F-x-0-1-ln-1-xt-2-dt-2-find-the-value-of-0-1-ln-1-1-2-t-2-dt-3-find-the-value-of-A-0-1-ln-1-sin-t-2-dt-




Question Number 38458 by maxmathsup by imad last updated on 25/Jun/18
let ∣x∣<1  calculate  F(x)=∫_0 ^1 ln(1+xt^2 )dt  2) find the value of ∫_0 ^1  ln(1 +(1/2)t^2 )dt  3)find the value of A(θ) =∫_0 ^1 ln(1+sinθ t^2 )dt .
letx∣<1calculateF(x)=01ln(1+xt2)dt2)findthevalueof01ln(1+12t2)dt3)findthevalueofA(θ)=01ln(1+sinθt2)dt.
Commented by math khazana by abdo last updated on 28/Jun/18
we have F^′ (x)= ∫_0 ^1    (t^2 /(1+xt^2 ))dt  =(1/x) ∫_0 ^1    ((xt^2  +1 −1)/(xt^2  +1))dt  =(1/x)  −(1/x) ∫_0 ^1     (dt/(1+xt^2 ))   so if 0<x<1changement (√x)t=u give  ∫_0 ^1    (dt/(1+xt^2 ))  = ∫_0 ^(√x)    (1/(1+u^2 ))  (du/( (√x)))  =(1/( (√x))) arctan((√x)) ⇒  F^′ (x)= (1/x) −((arctan((√x)))/(x(√x))) ⇒  F(x) = ∫_1 ^x   (dt/t)  − ∫_1 ^x    ((arctan((√t)))/(t(√t)))dt +c  =ln(x) −∫_1 ^x    ((arctan((√t)))/(t(√t)))dt +c but chang.(√t)=u  give ∫_1 ^x   ((arctan((√t)))/(t(√t)))dt =∫_1 ^(√x)     ((arctan(u))/(u^2 .u)) 2u du  =2 ∫_1 ^(√x)   ((arctan(u))/u^2 ) du   by parts  ∫_1 ^(√x)    ((arctanu)/u^2 ) du =  [−(1/u) arctan(u)]_1 ^(√x)   +∫_1 ^(√x)    (1/(u(1+u^2 )))du = (π/4) −((arctan((√x)))/( (√x)))  + ∫_1 ^(√x) ( (1/u) −(u/(1+u^2 )))du  =(π/4) −((arctan((√x)))/( (√x)))  +[ln((u/( (√(1+u^2 )))))]_1 ^(√x)   =(π/4) −((arctan((√x)))/( (√x))) +ln(((√x)/( (√(1+x))))) +ln((√2)) ⇒  F(x)= ln(x) −(π/2) +((2arctan((√x)))/( (√x))) −2ln(((√x)/( (√(1+x)))))  −ln(2) +c  F(1)=∫_0 ^1 ln(1+t^2 )dt =−(π/2) +(π/2) −2ln((1/( (√2))))  −ln(2) +c=c ⇒  F(x)= −(π/2)  +((2 arctan((√x)))/( (√x)))  +ln(1+x)−ln(2)  + ∫_0 ^1 ln(1+t^2 )dt  by parts  ∫_0 ^1  ln(1+t^2 )dt =[tln(1+t^2 )]_0 ^1  −∫_0 ^1  ((t 2t)/(1+t^2 ))dt  =ln(2) −2 ∫_0 ^1  ((1+t^2  −1)/(1+t^2 ))dt  =ln(2) −2 +2 ∫_0 ^1   (dt/(1+t^2 )) =ln(2) −2  +(π/2) ⇒  F(x)= ((2 arctan((√x)))/( (√x))) +ln(1+x) −2 with 0<x<1
wehaveF(x)=01t21+xt2dt=1x01xt2+11xt2+1dt=1x1x01dt1+xt2soif0<x<1changementxt=ugive01dt1+xt2=0x11+u2dux=1xarctan(x)F(x)=1xarctan(x)xxF(x)=1xdtt1xarctan(t)ttdt+c=ln(x)1xarctan(t)ttdt+cbutchang.t=ugive1xarctan(t)ttdt=1xarctan(u)u2.u2udu=21xarctan(u)u2dubyparts1xarctanuu2du=[1uarctan(u)]1x+1x1u(1+u2)du=π4arctan(x)x+1x(1uu1+u2)du=π4arctan(x)x+[ln(u1+u2)]1x=π4arctan(x)x+ln(x1+x)+ln(2)F(x)=ln(x)π2+2arctan(x)x2ln(x1+x)ln(2)+cF(1)=01ln(1+t2)dt=π2+π22ln(12)ln(2)+c=cF(x)=π2+2arctan(x)x+ln(1+x)ln(2)+01ln(1+t2)dtbyparts01ln(1+t2)dt=[tln(1+t2)]0101t2t1+t2dt=ln(2)2011+t211+t2dt=ln(2)2+201dt1+t2=ln(2)2+π2F(x)=2arctan(x)x+ln(1+x)2with0<x<1
Commented by math khazana by abdo last updated on 28/Jun/18
if −1<x<0 we have F^′ (x)=(1/x) −(1/x) ∫_0 ^1    (dt/(1+xt^2 ))  ∫_0 ^1     (dt/(1+xt^2 )) =∫_0 ^1    (dt/(1−(−x)t^2 )) =_((√(−x))t=u)  ∫_0 ^(√(−x))    (1/(1−u^2 )) (du/( (√(−x))))  =(1/( (√(−x)))) ∫_0 ^(√(−x))    (du/(1−u^2 )) =(1/(2(√(−x)))) ∫_0 ^(√(−x)) ( (1/(1+u)) +(1/(1−u)))du  = (1/(2(√(−x)))) [ln(((1+u)/(1−u)))]_0 ^(√(−x))  = (1/(2(√(−x)))) ln(((1+(√(−x)))/(1−(√(−x)))))⇒  F^′ (x) = (1/x) −(1/(2x(√(−x))))ln(((1+(√(−x)))/(1−(√(−x))))) ⇒  F(x)= ln(−x)  − ∫_1 ^x     (1/(2t(√(−t)))) ln(((1+(√(−t)))/(1−(√(−t)))))dt +c  ...be continued...
if1<x<0wehaveF(x)=1x1x01dt1+xt201dt1+xt2=01dt1(x)t2=xt=u0x11u2dux=1x0xdu1u2=12x0x(11+u+11u)du=12x[ln(1+u1u)]0x=12xln(1+x1x)F(x)=1x12xxln(1+x1x)F(x)=ln(x)1x12ttln(1+t1t)dt+cbecontinued
Commented by math khazana by abdo last updated on 28/Jun/18
2) ∫_0 ^1 ln(1+(1/2)t^2 )dt =F((1/2))=((2arctan((1/( (√2)))))/(1/( (√2)))) +ln((3/2))  −2 =2(√2) arctan((1/( (√2)))) +ln(3)−ln(2) −2 .
2)01ln(1+12t2)dt=F(12)=2arctan(12)12+ln(32)2=22arctan(12)+ln(3)ln(2)2.

Leave a Reply

Your email address will not be published. Required fields are marked *