let-x-lt-1-prove-that-arctanx-i-2-ln-i-x-i-x- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 35222 by abdo mathsup 649 cc last updated on 16/May/18 let∣x∣<1provethatarctanx=i2ln(i+xi−x) Commented by abdo mathsup 649 cc last updated on 17/May/18 wehavei+x=1+x2{x1+x2+i1+x2}=reiθ⇒r=1+x2andcosθ=x1+x2,sinθ=11+x2⇒tanθ=1x⇒θ=arctan(1x)⇒i+x=1+x2eiarxtan(1x)i−x=−(x−i)=−1+x2e−iarctan(1x)⇒i+xi−x=−ei(arctan(1x)+iarctan(1x)=−e2i{π2−arctanx}=e−2iarctanx⇒ln(i+xi−x)=−2iarctan(x)⇒arctanx=−12iln(i+xi−x)⇒★arctan(x)=i2ln(i+xi−x).★ Answered by sma3l2996 last updated on 17/May/18 tany=ieiy−e−iyeiy+e−iyarctanx=y⇒tan(y)=ieiy−e−iyeiy+e−iy=xieiy−e−iyeiy+e−iy=x⇔i(e2iy−1)=x(e2iy+1)e2iy(i−x)=x+i⇔e2iy=i+xi−x2iy=ln(i+xi−x)⇔y=12iln(i+xi−x)y=arctanx=i2ln(i−xi+x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-z-from-C-and-f-z-2z-z-1-2z-1-developp-f-at-integr-serie-Next Next post: what-is-the-value-of-cos-i-j-with-i-2-1-and-j-e-i-2pi-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.