Menu Close

let-x-lt-1-prove-that-arctanx-i-2-ln-i-x-i-x-




Question Number 35222 by abdo mathsup 649 cc last updated on 16/May/18
let ∣x∣<1 prove that   arctanx =(i/2)ln(((i+x)/(i−x)))
letx∣<1provethatarctanx=i2ln(i+xix)
Commented by abdo mathsup 649 cc last updated on 17/May/18
we have i+x=(√(1+x^2  )) {(x/( (√(1+x^2 )))) +(i/( (√(1+x^2 ))))} =r e^(iθ)   ⇒r=(√(1+x^2 ))  and cosθ= (x/( (√(1+x^2 )))) , sinθ  =(1/( (√(1+x^2 ))))  ⇒ tanθ=(1/x) ⇒θ =arctan((1/x)) ⇒  i+x =(√(1+x^2 ))  e^(i arxtan((1/x)))   i−x = −(x−i)=−(√(1+x^2 )) e^(−i arctan((1/x)))  ⇒  ((i+x)/(i−x)) = −e^(i(arctan((1/x))+i arctan((1/x)))   =− e^(2i{(π/2) −arctanx}) = e^(−2i arctanx)   ⇒  ln(((i+x)/(i−x)))= −2i arctan(x) ⇒  arctanx= ((−1)/(2i))ln(((i+x)/(i−x))) ⇒  ★ arctan(x)= (i/2)ln(((i+x)/(i−x))) .★
wehavei+x=1+x2{x1+x2+i1+x2}=reiθr=1+x2andcosθ=x1+x2,sinθ=11+x2tanθ=1xθ=arctan(1x)i+x=1+x2eiarxtan(1x)ix=(xi)=1+x2eiarctan(1x)i+xix=ei(arctan(1x)+iarctan(1x)=e2i{π2arctanx}=e2iarctanxln(i+xix)=2iarctan(x)arctanx=12iln(i+xix)arctan(x)=i2ln(i+xix).
Answered by sma3l2996 last updated on 17/May/18
tany=i((e^(iy) −e^(−iy) )/(e^(iy) +e^(−iy) ))  arctanx=y⇒tan(y)=i((e^(iy) −e^(−iy) )/(e^(iy) +e^(−iy) ))=x  i((e^(iy) −e^(−iy) )/(e^(iy) +e^(−iy) ))=x⇔i(e^(2iy) −1)=x(e^(2iy) +1)  e^(2iy) (i−x)=x+i⇔e^(2iy) =((i+x)/(i−x))  2iy=ln(((i+x)/(i−x)))⇔y=(1/(2i))ln(((i+x)/(i−x)))  y=arctanx=(i/2)ln(((i−x)/(i+x)))
tany=ieiyeiyeiy+eiyarctanx=ytan(y)=ieiyeiyeiy+eiy=xieiyeiyeiy+eiy=xi(e2iy1)=x(e2iy+1)e2iy(ix)=x+ie2iy=i+xix2iy=ln(i+xix)y=12iln(i+xix)y=arctanx=i2ln(ixi+x)

Leave a Reply

Your email address will not be published. Required fields are marked *