Menu Close

let-x-n-1-1-n-x-calculate-lim-x-1-x-1-x-




Question Number 98189 by abdomathmax last updated on 12/Jun/20
let ξ(x) =Σ_(n=1) ^∞  (1/n^x )  calculate lim_(x→1^+ )    (x−1)ξ(x)
letξ(x)=n=11nxcalculatelimx1+(x1)ξ(x)
Answered by mathmax by abdo last updated on 12/Jun/20
the function  t→(1/t^x ) is  decreazing on ]1,+∞[  so  Σ_(k=2) ^n ∫_k ^(k+1)  (dt/t^x ) ≤  Σ_(k=2) ^n  (1/k^x ) ≤Σ_(k=2) ^n  ∫_(k−1) ^k  (dt/t^x )   ⇒  ∫_2 ^(n+1)  (dt/t^x ) ≤ ξ_n (x) ≤∫_1 ^n  (dt/t^x )   we have  ∫_2 ^(n+1)  (dt/t^x ) =∫_2 ^(n+1)  t^(−x)  dt =[(1/(1−x))t^(−x+1) ]_2 ^(n+1)   =(1/(1−x)){ (1/((n+1)^(x−1) ))−(1/2^(x−1) )} =(1/((x−1))){(1/2^(x−1) )−(1/((n+1)^(x−1) ))}  ∫_1 ^n  t^(−x)  dt =[(1/(−x+1)) t^(−x+1) ]_1 ^n  =(1/(1−x))[ (1/t^(x−1) )]_1 ^n  =(1/(1−x)){(1/n^(x−1) )−1}  =(1/(x−1)){1−(1/n^(x−1) )} ⇒ (1/(x−1)){(1/2^(x−1) )−(1/((n+1)^(x−1) ))} ≤ Σ_(k=1) ^n  (1/k^x )−1 ≤(1/(x−1)){1−(1/n^(x−1) )} ⇒  ∀x>1  (1/2^(x−1) ) −(1/((n+1)^(x−1) )) ≤(x−1)ξ_n (x)−(x−1)≤1−(1/n^(x−1) ) ⇒  ⇒(1/2^(x−1) ) ≤ (x−1)ξ(x)−(x−1)≤ 1 ⇒lim_(x→1^+ )    (1/2^(x−1) ) ≤lim_(x→1^+ )   (x−1)ξ(x)≤1  ⇒lim_(x→1^+ )   (x−1)ξ(x) =1
thefunctiont1txisdecreazingon]1,+[sok=2nkk+1dttxk=2n1kxk=2nk1kdttx2n+1dttxξn(x)1ndttxwehave2n+1dttx=2n+1txdt=[11xtx+1]2n+1=11x{1(n+1)x112x1}=1(x1){12x11(n+1)x1}1ntxdt=[1x+1tx+1]1n=11x[1tx1]1n=11x{1nx11}=1x1{11nx1}1x1{12x11(n+1)x1}k=1n1kx11x1{11nx1}x>112x11(n+1)x1(x1)ξn(x)(x1)11nx112x1(x1)ξ(x)(x1)1limx1+12x1limx1+(x1)ξ(x)1limx1+(x1)ξ(x)=1
Commented by mathmax by abdo last updated on 12/Jun/20
the important result here is that if f decrease  we have  ∫_k ^(k+1) f(t)dt ≤f(k)≤∫_(k−1) ^k  f(t)dt     here f(t) =(1/t^x )   (t>1)
theimportantresulthereisthatiffdecreasewehavekk+1f(t)dtf(k)k1kf(t)dtheref(t)=1tx(t>1)

Leave a Reply

Your email address will not be published. Required fields are marked *