Menu Close

let-x-n-1-1-n-x-with-x-gt-1-1-calculate-lim-x-1-x-and-lim-x-x-2-prove-that-x-1-2-x-o-2-x-x-3-prove-that-is-decreasing-and-convexe-fuc




Question Number 62425 by mathmax by abdo last updated on 21/Jun/19
let ξ(x) =Σ_(n=1) ^∞  (1/n^x )     with x>1  1) calculate lim_(x→1^+ )   ξ(x)  and lim_(x→+∞)    ξ(x)  2) prove that ξ(x) =1+2^(−x)  +o(2^(−x) )   (x→+∞)  3) prove that ξ is decreasing and convexe fucntion on]1,+∞[
$${let}\:\xi\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:\:\:{with}\:{x}>\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{1}^{+} } \:\:\xi\left({x}\right)\:\:{and}\:{lim}_{{x}\rightarrow+\infty} \:\:\:\xi\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\xi\left({x}\right)\:=\mathrm{1}+\mathrm{2}^{−{x}} \:+{o}\left(\mathrm{2}^{−{x}} \right)\:\:\:\left({x}\rightarrow+\infty\right) \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\xi\:{is}\:{decreasing}\:{and}\:{convexe}\:{fucntion}\:{on}\right]\mathrm{1},+\infty\left[\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *