Menu Close

let-x-y-gt-0-such-that-x-3-y-3-2-find-the-minimum-value-of-the-following-expression-P-2020x-2021y-




Question Number 159378 by HongKing last updated on 16/Nov/21
let  x;y>0  such that  x^3  + y^3  = 2  find the minimum value of the  following expression:  P = 2020x + 2021y
letx;y>0suchthatx3+y3=2findtheminimumvalueofthefollowingexpression:P=2020x+2021y
Commented by mr W last updated on 16/Nov/21
P_(max)  exists.  but for x, y>0 P_(min)  doesn′t exist.  only for x, y≥0 P_(min)  exists.
Pmaxexists.butforx,y>0Pmindoesntexist.onlyforx,y0Pminexists.
Commented by HongKing last updated on 16/Nov/21
yes my dear Ser, sorry find the maximum
yesmydearSer,sorryfindthemaximum
Answered by mr W last updated on 16/Nov/21
for extrem value of P the line  2020x+2021y=P should tangent the  curve x^3 +y^3 =2.  2x^2 +3y^2 (dy/dx)=0  x^2 −y^2 ×((2020)/(2021))=0  ⇒y=(√((2021)/(2020)))x  x^3 +((2021)/(2020))(√((2021)/(2020)))x^3 =2  x=((2/(1+((2021)/(2020))(√((2021)/(2020))))))^(1/3)   y=(√((2021)/(2020)))((2/(1+((2021)/(2020))(√((2021)/(2020))))))^(1/3)   P_(max) =(2020+2021(√((2021)/(2020))))((2/(1+((2021)/(2020))(√((2021)/(2020))))))^(1/3)   =2020((2(1+((2021)/(2020))(√((2021)/(2020))))^2 ))^(1/3)   ≈4041.000062
forextremvalueofPtheline2020x+2021y=Pshouldtangentthecurvex3+y3=2.2x2+3y2dydx=0x2y2×20202021=0y=20212020xx3+2021202020212020x3=2x=21+20212020202120203y=2021202021+20212020202120203Pmax=(2020+202120212020)21+20212020202120203=20202(1+2021202020212020)234041.000062
Commented by HongKing last updated on 16/Nov/21
thank you so much my dear Ser perfect
thankyousomuchmydearSerperfect
Commented by mr W last updated on 16/Nov/21

Leave a Reply

Your email address will not be published. Required fields are marked *