Menu Close

Let-x-y-R-such-that-2x-2-3y-2-5-Find-the-minimum-and-maximum-of-expression-P-x-3-y-3-x-2y-




Question Number 173707 by dragan91 last updated on 16/Jul/22
Let x,y∈R such that 2x^2 +3y^2 =5  Find the minimum and  maximum of expression:  P=x^3 −y^3 +x−2y
Letx,yRsuchthat2x2+3y2=5Findtheminimumandmaximumofexpression:P=x3y3+x2y
Answered by a.lgnaoui last updated on 17/Jul/22
  ((d(P))/dx)+((d(P))/dy)=3x^2 +1−3y^2 −2  =3x^2 −3y^2 −1    3y^2 =5−2x^2   3x^2 −1−(5−2x^2 )=5x^2 −6    the maximum  and minimum of  P verify  P′(x)=0  5x^2 −6=0    x=±(√(6/5))   x=±(√(6/5))     y=(√((5−2(6/5))/3))=(√((13)/(15)))  m=(−(√((6/5),))(√((13)/(15))) )  max=(+(√(6/5)),(√((13)/(15))))
d(P)dx+d(P)dy=3x2+13y22=3x23y213y2=52x23x21(52x2)=5x26themaximumandminimumofPverifyP(x)=05x26=0x=±65x=±65y=(5265)/3=1315m=(65,1315)max=(+65,1315)
Commented by mr W last updated on 17/Jul/22
i think your method is wrong.  for conditional extremums it doesn′t  hold that (∂P/∂x)=0 ∧ (∂P/∂y)=0, or (∂P/∂x)+(∂P/∂y)=0  as you said.
ithinkyourmethodiswrong.forconditionalextremumsitdoesntholdthatPx=0Py=0,orPx+Py=0asyousaid.
Answered by mr W last updated on 17/Jul/22
G=x^3 −y^3 +x−2y+λ(2x^2 +3y^2 −5)  (∂G/∂x)=3x^2 +1+4λx=0 ⇒x=((−2λ±(√(4λ^2 −3)))/3)  (∂G/∂y)=−3y^2 −2+6λy=0 ⇒y=((3λ±(√(9λ^2 −6)))/3)  (∂G/∂λ)=2x^2 +3y^2 −5=0  ⇒2[((−2λ±(√(4λ^2 −3)))/3)]^2 +3[((3λ±(√(9λ^2 −6)))/3)]^2 −5=0  that′s 4 equations which all can′t  be solved exactly.  we get approximately  λ=−1.3191, P=5.8033=max  λ=0.8872, P=−4.9111  λ=−0.8872, P=4.9111  λ=1.3191, P=−5.8033=min
G=x3y3+x2y+λ(2x2+3y25)Gx=3x2+1+4λx=0x=2λ±4λ233Gy=3y22+6λy=0y=3λ±9λ263Gλ=2x2+3y25=02[2λ±4λ233]2+3[3λ±9λ263]25=0thats4equationswhichallcantbesolvedexactly.wegetapproximatelyλ=1.3191,P=5.8033=maxλ=0.8872,P=4.9111λ=0.8872,P=4.9111λ=1.3191,P=5.8033=min
Commented by mr W last updated on 17/Jul/22
Commented by Tawa11 last updated on 17/Jul/22
Great sir
Greatsir
Commented by a.lgnaoui last updated on 17/Jul/22
thank you professor
thankyouprofessor
Answered by MJS_new last updated on 17/Jul/22
2x^2 +3y^2 =5 ⇒ y=σ((√(3(5−2x^2 )))/3)∧σ=±1  P(x)=x(x^2 +1)+σ(((2x^2 −11)(√(3(5−2x^2 ))))/9)  P ′(x)=0  3x^2 +1−σ((2(√3)x(2x^2 −7))/(3(√(5−2x^2 ))))=0  ⇒  x^6 −((211)/(70))x^4 +(8/5)x^2 −(3/(14))=0  t=x^2   t^3 −((211)/(70))t^2 +(8/5)t−(3/(14))=0  good luck! t=(3/(14)) is a solution  t=(3/(14))∨t=(7/5)±((2(√6))/5)  now it′s easy to get  min (P(x)) =−(((9+44(√6))(√5))/(45)) at x=−(((1+(√6))(√5))/5)∧y=(((3−2(√6))(√5))/(15))  max (P(x))=(((9+44(√6))(√5))/(45)) at x=(((1+(√6))(√5))/5)∧y=−(((3−2(√6))(√5))/(15))  [approximated values ≈±5.80272 at x≈±1.54266 ∧y≈±.283083]
2x2+3y2=5y=σ3(52x2)3σ=±1P(x)=x(x2+1)+σ(2x211)3(52x2)9P(x)=03x2+1σ23x(2x27)352x2=0x621170x4+85x2314=0t=x2t321170t2+85t314=0goodluck!t=314isasolutiont=314t=75±265nowitseasytogetmin(P(x))=(9+446)545atx=(1+6)55y=(326)515max(P(x))=(9+446)545atx=(1+6)55y=(326)515[approximatedvalues±5.80272atx±1.54266y±.283083]
Commented by Tawa11 last updated on 17/Jul/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *