Menu Close

let-x-y-z-0-and-x-2-y-2-z-2-12-find-the-min-value-of-S-x-y-z-xyz-1-xy-yz-zx-




Question Number 153381 by mathdanisur last updated on 06/Sep/21
let  x;y;z≥0  and  x^2 +y^2 +z^2 =12  find the min value of  S = x + y + z + xyz + (1/(xy + yz + zx))
$$\mathrm{let}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{12} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{S}\:=\:\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:+\:\mathrm{xyz}\:+\:\frac{\mathrm{1}}{\mathrm{xy}\:+\:\mathrm{yz}\:+\:\mathrm{zx}} \\ $$
Commented by mr W last updated on 06/Sep/21
S_(min) =3×2+2^3 +(1/(3×2^2 ))=((169)/(12))
$${S}_{{min}} =\mathrm{3}×\mathrm{2}+\mathrm{2}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{3}×\mathrm{2}^{\mathrm{2}} }=\frac{\mathrm{169}}{\mathrm{12}} \\ $$
Commented by mathdanisur last updated on 07/Sep/21
No ser = (9/2)
$$\mathrm{No}\:\mathrm{ser}\:=\:\frac{\mathrm{9}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *