Menu Close

Let-x-y-z-be-non-negative-real-numbers-such-that-x-y-z-1-Find-the-extremum-of-F-2x-2-y-3z-2-




Question Number 119724 by benjo_mathlover last updated on 26/Oct/20
Let x,y,z be non negative real numbers  such that x+y+z=1. Find the extremum  of F = 2x^2 +y+3z^2  .
Letx,y,zbenonnegativerealnumberssuchthatx+y+z=1.FindtheextremumofF=2x2+y+3z2.
Answered by mindispower last updated on 26/Oct/20
y=1−x−z  2(x−(1/4))^2 +3(z−(1/6))^2 +1−((1/8)+(1/(12)))_(=((19)/(24)))   ≥((19)/(24))
y=1xzMissing \left or extra \right1924
Commented by bemath last updated on 26/Oct/20
what the max value sir ?
whatthemaxvaluesir?
Answered by 1549442205PVT last updated on 27/Oct/20
F=2x^2 +3z^2 +1−x−z=2(x−(1/4))^2   +3(z−(1/6))^2 +1−(1/8)−(1/(12))≥1−(1/8)−(1/(12))=((19)/(24))  ⇒F_(min) =((19)/(24)) when (x,y,z)=((1/4),(7/(12)),(1/6))  b)Since x+y+z=1 ,x,y,z≥0(hypothesis)  ⇒0≤x,y,z≤1⇒x^2 ≤x,y^2 ≤y,z^2 ≤z  ⇒F=2x^2 +y+3z^2 ≤3x^2 +y+3z^2 ≤  3x+3y+3z=3(x+y+z)=3.The equality  ocurrs if and only if x=y=0,z=1  Hence F_(max) =3 when (x,y,z)=(0,0,1)
F=2x2+3z2+1xz=2(x14)2Missing \left or extra \rightFmin=1924when(x,y,z)=(14,712,16)b)Sincex+y+z=1,x,y,z0(hypothesis)0x,y,z1x2x,y2y,z2zF=2x2+y+3z23x2+y+3z23x+3y+3z=3(x+y+z)=3.Theequalityocurrsifandonlyifx=y=0,z=1HenceFmax=3when(x,y,z)=(0,0,1)

Leave a Reply

Your email address will not be published. Required fields are marked *