Menu Close

Let-x-y-z-be-nonnegative-real-numbers-which-satisfy-x-y-z-1-Find-minimum-value-of-Q-2-x-2-y-2-z-




Question Number 119790 by bemath last updated on 27/Oct/20
Let x,y,z be nonnegative real  numbers, which satisfy x+y+z=1  Find minimum value of   Q=(√(2−x)) + (√(2−y)) + (√(2−z)) .
Letx,y,zbenonnegativerealnumbers,whichsatisfyx+y+z=1FindminimumvalueofQ=2x+2y+2z.
Answered by 1549442205PVT last updated on 27/Oct/20
Put x+y=2a,x+z=2b,y+z=2c  ⇒a+b+c=x+y+z=1;a,b,c≥0  Q=(√(1+y+z))+(√(1+x+z))+(√(1+x+y))  =(√(1+2a))+(√(1+2b))+(√(1+2c)) with a+b+c=1  Q(a,b)=(√(1+2a))+(√(1+2b))+(√(3−2(a+b)))   We find extremum of    { (((∂Q/∂a)=0)),(((∂Q/∂b)=0)) :}  ⇔ { (((1/( (√(1+2a))))−(1/( (√(3−2(a+b)))))=0(1))),(((1/( (√(1+2b))))−(1/( (√(3−2(a+b)))))=0(2))) :}  ⇒(1/( (√(1+2a))))=(1/( (√(1+2b))))⇒a=b  Replace into (1) we get  (√(3−4a))=(√(1+2a))⇔3−4a=1+2a  ⇔6a=2⇒a=b=1/3  A=(∂^2 Q/∂a^2 )∣_(((1/3),(1/3))) =((−1)/((1+2a)(√(1+2a))))−(1/( [3−2(a+b)](√(3−2(a+b)))))∣_(((1/3),(1/3)))   =((−9)/( 5(√(15))))−(9/(5(√(15))))=((−18)/(5(√(15))))<0  C=(∂^2 Q/∂b^2 )∣_(((1/3),(1/3))) =((−1)/((1+2b)(√(1+2b))))−(1/([3−2(a+b)](√(3−2(a+b)))))∣_(((1/3),(1/3)))   =((−18)/( (√(515))))<0  (∂^2 Q/(∂a∂b))∣_(((1/3),(1/3))) =(∂Q/∂b)((1/( (√(1+2a))))−(1/( (√(3−2(a+b))))))  B=(1/( (√(3−2(a+b)))))∣_(((1/3),(1/3))) =(3/( (√(15))))  Δ=AC−B^2 =[((18)/( 5(√(15))))]^2 −(9/(15))=((324−225)/(25.15))>0  Since A<0,Q has maximum  Q_(max) =Q((1/3),(1/3))=(√(15 )) when(x,y,z)  =((1/3),(1/3),(1/3))   On the other hand, consider Q(x,y,z) at  the bounded points we have  Q(0,1,0)=Q(0,1,0)=Q(0,0,1)=  =1+2(√2)=3.828..<(√(15)) ≈3.873  Q((1/2),(1/2),0)=(√2)+(√6)≈3.8637>1+2(√2)  Comparing the above values we see  Tthe smallest value  of Q equal to 1+2(√2)  when (x,y,z)=(0,0,1)  and all the its  permutation
Putx+y=2a,x+z=2b,y+z=2ca+b+c=x+y+z=1;a,b,c0Q=1+y+z+1+x+z+1+x+y=1+2a+1+2b+1+2cwitha+b+c=1Q(a,b)=1+2a+1+2b+32(a+b)Wefindextremumof{Qa=0Qb=0{11+2a132(a+b)=0(1)11+2b132(a+b)=0(2)11+2a=11+2ba=bReplaceinto(1)weget34a=1+2a34a=1+2a6a=2a=b=1/3A=2Qa2(13,13)=1(1+2a)1+2a1[32(a+b)]32(a+b)(13,13)=95159515=18515<0C=2Qb2(13,13)=1(1+2b)1+2b1[32(a+b)]32(a+b)(13,13)=18515<02Qab(13,13)=Qb(11+2a132(a+b))B=132(a+b)(13,13)=315Δ=ACB2=[18515]2915=32422525.15>0SinceA<0,QhasmaximumQmax=Q(13,13)=15when(x,y,z)=(13,13,13)Ontheotherhand,considerQ(x,y,z)attheboundedpointswehaveQ(0,1,0)=Q(0,1,0)=Q(0,0,1)==1+22=3.828..<153.873Q(12,12,0)=2+63.8637>1+22ComparingtheabovevaluesweseeTthesmallestvalueofQequalto1+22when(x,y,z)=(0,0,1)andalltheitspermutation
Answered by ebi last updated on 27/Oct/20
  Q=(2−x)^(1/2) +(2−y)^(1/2) +(2−z)^(1/2)   constraint, x+y+z=1=F  the solution lies on 0≤x,y,z≤1    ▽Q=λ▽F  ⟨Q_x ,Q_y ,Q_z ⟩=λ⟨F_x ,F_y ,F_z ⟩  λ=lagrange multiplier    Q_x =λF_x   −(1/(2(√(2−x))))=λ  (−(1/(2(√(2−x)))))^2 =λ^2   λ^2 =(1/(4(2−x)))  x=2−(1/(4λ^2 ))......(1)  Q_y =λF_y   −(1/(2(√(2−y))))=λ  λ^2 =(1/(4(2−y)))  y=2−(1/(4λ^2 ))......(2)  Q_z =λF_z   −(1/(2(√(2−z))))=λ  λ^2 =(1/(4(2−z)))  z=2−(1/(4λ^2 ))......(3)  x+y+z=1......(4)    substitute (1),(2),(3) into (4)  (2−(1/(4λ^2 )))+(2−(1/(4λ^2 )))+(2−(1/(4λ^2 )))=1  −(3/(4λ^2 ))=−5  λ^2 =(3/(20))    x=2−(1/(4((3/(20)))))=(1/3)  y=2−(1/(4((3/(20)))))=(1/3)  z=2−(1/(4((3/(20)))))=(1/3)  ∴the solution is ((1/3),(1/3),(1/3))  G((1/3),(1/3),(1/3))=(√(2−(1/3)))+(√(2−(1/3)))+(√(2−(1/3)))  =3(√(5/3))=(√(15))≈3.873  because of this point is the only  stationary point, we have to consider  other points for maxima or minima    consider these 3 points:  (1,0,0),(0,1,0),(0,0,1)  G(1,0,0)=G(0,1,0)=G(0,0,1)  =1+2(√2)≈3.828    thus,  G((1/3),(1/3),(1/3))=3.873→maximum  G(1,0,0)=G(0,1,0)=G(0,0,1)=3.828→minimum
Q=(2x)12+(2y)12+(2z)12constraint,x+y+z=1=Fthesolutionlieson0x,y,z1Q=λFQx,Qy,Qz=λFx,Fy,Fzλ=lagrangemultiplierQx=λFx122x=λ(122x)2=λ2λ2=14(2x)x=214λ2(1)Qy=λFy122y=λλ2=14(2y)y=214λ2(2)Qz=λFz122z=λλ2=14(2z)z=214λ2(3)x+y+z=1(4)substitute(1),(2),(3)into(4)(214λ2)+(214λ2)+(214λ2)=134λ2=5λ2=320x=214(320)=13y=214(320)=13z=214(320)=13thesolutionis(13,13,13)G(13,13,13)=213+213+213=353=153.873becauseofthispointistheonlystationarypoint,wehavetoconsiderotherpointsformaximaorminimaconsiderthese3points:(1,0,0),(0,1,0),(0,0,1)G(1,0,0)=G(0,1,0)=G(0,0,1)=1+223.828thus,G(13,13,13)=3.873maximumG(1,0,0)=G(0,1,0)=G(0,0,1)=3.828minimum

Leave a Reply

Your email address will not be published. Required fields are marked *