Let-x-y-z-be-nonnegative-real-numbers-which-satisfy-x-y-z-1-Find-minimum-value-of-Q-2-x-2-y-2-z- Tinku Tara June 4, 2023 Number Theory 0 Comments FacebookTweetPin Question Number 119790 by bemath last updated on 27/Oct/20 Letx,y,zbenonnegativerealnumbers,whichsatisfyx+y+z=1FindminimumvalueofQ=2−x+2−y+2−z. Answered by 1549442205PVT last updated on 27/Oct/20 Putx+y=2a,x+z=2b,y+z=2c⇒a+b+c=x+y+z=1;a,b,c⩾0Q=1+y+z+1+x+z+1+x+y=1+2a+1+2b+1+2cwitha+b+c=1Q(a,b)=1+2a+1+2b+3−2(a+b)Wefindextremumof{∂Q∂a=0∂Q∂b=0⇔{11+2a−13−2(a+b)=0(1)11+2b−13−2(a+b)=0(2)⇒11+2a=11+2b⇒a=bReplaceinto(1)weget3−4a=1+2a⇔3−4a=1+2a⇔6a=2⇒a=b=1/3A=∂2Q∂a2∣(13,13)=−1(1+2a)1+2a−1[3−2(a+b)]3−2(a+b)∣(13,13)=−9515−9515=−18515<0C=∂2Q∂b2∣(13,13)=−1(1+2b)1+2b−1[3−2(a+b)]3−2(a+b)∣(13,13)=−18515<0∂2Q∂a∂b∣(13,13)=∂Q∂b(11+2a−13−2(a+b))B=13−2(a+b)∣(13,13)=315Δ=AC−B2=[18515]2−915=324−22525.15>0SinceA<0,QhasmaximumQmax=Q(13,13)=15when(x,y,z)=(13,13,13)Ontheotherhand,considerQ(x,y,z)attheboundedpointswehaveQ(0,1,0)=Q(0,1,0)=Q(0,0,1)==1+22=3.828..<15≈3.873Q(12,12,0)=2+6≈3.8637>1+22ComparingtheabovevaluesweseeTthesmallestvalueofQequalto1+22when(x,y,z)=(0,0,1)andalltheitspermutation Answered by ebi last updated on 27/Oct/20 Q=(2−x)12+(2−y)12+(2−z)12constraint,x+y+z=1=Fthesolutionlieson0⩽x,y,z⩽1▽Q=λ▽F⟨Qx,Qy,Qz⟩=λ⟨Fx,Fy,Fz⟩λ=lagrangemultiplierQx=λFx−122−x=λ(−122−x)2=λ2λ2=14(2−x)x=2−14λ2……(1)Qy=λFy−122−y=λλ2=14(2−y)y=2−14λ2……(2)Qz=λFz−122−z=λλ2=14(2−z)z=2−14λ2……(3)x+y+z=1……(4)substitute(1),(2),(3)into(4)(2−14λ2)+(2−14λ2)+(2−14λ2)=1−34λ2=−5λ2=320x=2−14(320)=13y=2−14(320)=13z=2−14(320)=13∴thesolutionis(13,13,13)G(13,13,13)=2−13+2−13+2−13=353=15≈3.873becauseofthispointistheonlystationarypoint,wehavetoconsiderotherpointsformaximaorminimaconsiderthese3points:(1,0,0),(0,1,0),(0,0,1)G(1,0,0)=G(0,1,0)=G(0,0,1)=1+22≈3.828thus,G(13,13,13)=3.873→maximumG(1,0,0)=G(0,1,0)=G(0,0,1)=3.828→minimum Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-185320Next Next post: Question-185325 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.