Menu Close

let-x-y-z-be-positive-real-numbers-such-that-x-y-z-1-Determine-the-minimum-value-of-1-x-4-y-9-z-




Question Number 119303 by bobhans last updated on 23/Oct/20
 let x,y,z be positive real numbers   such that x+y+z=1. Determine   the minimum value of (1/x)+(4/y)+(9/z).
letx,y,zbepositiverealnumberssuchthatx+y+z=1.Determinetheminimumvalueof1x+4y+9z.
Answered by TANMAY PANACEA last updated on 23/Oct/20
(1/x)+(4/y)+(9/z)  (1^2 /x)+(2^2 /y)+(3^2 /z)≥(((1+2+3)^2 )/(x+y+z))  so minimum value=36  using Tittu lemma
1x+4y+9z12x+22y+32z(1+2+3)2x+y+zsominimumvalue=36usingTittulemma
Answered by bobhans last updated on 24/Oct/20
by Chauchy−Schwarz inequality  (1/x)+(4/y)+(9/z) = (x+y+z)((1/x)+(4/y)+(9/z)) ≥ (1+2+3)^2 = 36  equality hold if only if (x,y,z)=((1/6),(1/3),(1/2))
byChauchySchwarzinequality1x+4y+9z=(x+y+z)(1x+4y+9z)(1+2+3)2=36equalityholdifonlyif(x,y,z)=(16,13,12)
Answered by 1549442205PVT last updated on 24/Oct/20
Applying the inequality  (ax+by+cz)^2 ≤(a^2 +b^2 +c^2 (x^2 +y^2 +z^2 )  we have  (1+2+3)^2 =((1/( (√x))).(√x)+(2/( (√y))).(√y)+(3/z).(√z))^2   ≤((1/x)+(4/y)+(9/z))(x+y+z)=(1/x)+(2/y)+(3/z)  ⇒(1/x)+(2/y)+(3/z)≥36.The equality ocurrs  if and only if  { (((1/x)=(2/y)=(3/z)=(6/(x+y+z))=6)),((x+y+z=1)) :}  ⇔x=(1/6),y=(1/3),z=(1/2).Thus,  ((1/x)+(2/y)+(3/z))_(min) =36 when  x=(1/6),y=(1/3),z=(1/2)
Applyingtheinequality(ax+by+cz)2(a2+b2+c2(x2+y2+z2)wehave(1+2+3)2=(1x.x+2y.y+3z.z)2(1x+4y+9z)(x+y+z)=1x+2y+3z1x+2y+3z36.Theequalityocurrsifandonlyif{1x=2y=3z=6x+y+z=6x+y+z=1x=16,y=13,z=12.Thus,(1x+2y+3z)min=36whenx=16,y=13,z=12

Leave a Reply

Your email address will not be published. Required fields are marked *