Menu Close

let-x-y-z-gt-0-such-that-x-4-y-4-z-4-x-2-y-2-z-2-find-the-minimum-of-the-expression-P-x-2-y-y-2-z-z-2-x-




Question Number 162788 by HongKing last updated on 01/Jan/22
let  x;y;z > 0  such that  x^4 +y^4 +z^4  = x^2 +y^2 +z^2   find the minimum of the expression:  P = (x^2 /y) + (y^2 /z) + (z^2 /x)
letx;y;z>0suchthatx4+y4+z4=x2+y2+z2findtheminimumoftheexpression:P=x2y+y2z+z2x
Answered by alephzero last updated on 01/Jan/22
x^4  + y^4  + z^4  = x^2  + y^2  + z^2   (x_1 ; y_1 ; z_1 ) = (−1; −1; −1)  (x_2 ; y_2 ; z_2 ) = (0; 0; 0)  (x_3 ; y_3 ; z_3 ) = (1; 1; 1)  But x; y; z > 0  ⇒ (x; y; z) = (1; 1; 1)  P = (x^2 /y) + (y^2 /z) + (z^2 /x) = (1^2 /1) + (1^2 /1) + (1^2 /1) = 1 + 1 +  + 1 = 3  P = 3
x4+y4+z4=x2+y2+z2(x1;y1;z1)=(1;1;1)(x2;y2;z2)=(0;0;0)(x3;y3;z3)=(1;1;1)Butx;y;z>0(x;y;z)=(1;1;1)P=x2y+y2z+z2x=121+121+121=1+1++1=3P=3
Commented by HongKing last updated on 01/Jan/22
My dear Sir thank you, but  need to prove  P≥3  for all  x;y;z  such that  x^4 +y^4 +z^4  = x^2 +y^2 +z^2
MydearSirthankyou,butneedtoproveP3forallx;y;zsuchthatx4+y4+z4=x2+y2+z2

Leave a Reply

Your email address will not be published. Required fields are marked *