Menu Close

Let-x-y-Z-if-x-2-y-2-divide-xy-1-then-prove-x-2-y-2-xy-1-is-square-of-integer-number-




Question Number 53618 by kaivan.ahmadi last updated on 23/Jan/19
Let x,y∈Z  if x^2 +y^2  divide xy+1 then prove  ((x^2 +y^2 )/(xy+1)) is square of integer number
Letx,yZifx2+y2dividexy+1thenprovex2+y2xy+1issquareofintegernumber
Commented by mr W last updated on 24/Jan/19
i think there is only one possibility:  x=y=1 or −1
ithinkthereisonlyonepossibility:x=y=1or1
Commented by kaivan.ahmadi last updated on 24/Jan/19
thank you, chek the proof....
thankyou,chektheproof.
Commented by Kunal12588 last updated on 28/Mar/19
let x=2 and y=8  ((2^2 +8^2 )/((2)(8)+1))=((4+64)/(16+1))=((68)/(17))=4=2^2
letx=2andy=822+82(2)(8)+1=4+6416+1=6817=4=22
Answered by kaivan.ahmadi last updated on 24/Jan/19
suppose that x=n≠0 then ((y^2 + n^2 )/(ny+1))  the root of ny+1=0 must be the root  of y^2 +n=0  ny+1=0⇒y=((−1)/n) ∈Z ⇒n=±1⇒y=±1 ,x=±1  if x=1 ⇒y=1  if x=−1 ⇒y=−1  so ((x^2 +y^2 )/(xy+1))=1.  Now suppose that x=0 then  ((x^2 +y^2 )/(xy+1))=y^2  and there is no thing to proof.  similary y=0  is it true mr w?
supposethatx=n0theny2+n2ny+1therootofny+1=0mustbetherootofy2+n=0ny+1=0y=1nZn=±1y=±1,x=±1ifx=1y=1ifx=1y=1sox2+y2xy+1=1.Nowsupposethatx=0thenx2+y2xy+1=y2andthereisnothingtoproof.similaryy=0isittruemrw?
Commented by mr W last updated on 24/Jan/19
it′s correct sir. this is my try:  ((xy+1)/(x^2 +y^2 ))=n=some integer >0  ⇒xy+1=n(x^2 +y^2 )≥n(2xy)  ⇒(2n−1)xy≤1  ⇒(1/(2n−1))≥xy≥1  ⇒2n−1=1  ⇒n=1 and xy=1  ⇒x=y=1 (or −1)
itscorrectsir.thisismytry:xy+1x2+y2=n=someinteger>0xy+1=n(x2+y2)n(2xy)(2n1)xy112n1xy12n1=1n=1andxy=1x=y=1(or1)
Commented by kaivan.ahmadi last updated on 24/Jan/19
very nice.attaching  x=0 or y=0 complete the proof.  thank you sir.
verynice.attachingx=0ory=0completetheproof.thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *