Question Number 25397 by naka3546 last updated on 09/Dec/17
$${Let}\:\:{y}\:\:=\:\:{f}\:\left({x}\right) \\ $$$$\:\:\:\:{f}\:\left(\mathrm{0}\right)\:\:=\:\:\mathrm{5} \\ $$$${f}\:'\left({x}\right)\:\:=\:\:−\mathrm{3}{x}\:+\:\mathrm{2}\:\underset{\mathrm{0}} {\int}\overset{\mathrm{2}} {\:}{f}\:\left({x}\right)\:{dx} \\ $$$${Find}\:\:{the}\:\:{maximum}\:\:{value}\:\:{of}\:\:\:\boldsymbol{{y}}\:\:=\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:. \\ $$$$ \\ $$
Commented by prakash jain last updated on 09/Dec/17
$${c}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({x}\right){dx} \\ $$$${f}^{'} \left({x}\right)=−\mathrm{3}{x}+{c} \\ $$$${f}\left({x}\right)=−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}+{cx}+{c}_{\mathrm{1}} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{5}\Rightarrow{c}_{\mathrm{1}} =\mathrm{5} \\ $$$${f}\left({x}\right)=−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}+{cx}+\mathrm{5} \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\:\:\mathrm{2}} {f}\left({x}\right){dx}=\mathrm{2}\left[−\frac{{x}^{\mathrm{3}} }{\mathrm{2}}+\frac{{cx}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{5}{x}\right]_{\mathrm{0}} ^{\mathrm{2}} \\ $$$${c}=−\mathrm{8}+\mathrm{4}{c}+\mathrm{20} \\ $$$${c}=−\mathrm{4} \\ $$$${f}\left({x}\right)=−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{4}{x}+\mathrm{5} \\ $$$${quadratic}\:{with}\:{a}<\mathrm{0}\:{so}\:{maximum} \\ $$$${value}\:{at}\:{x}=\frac{−{b}}{\mathrm{2}{a}} \\ $$$${x}=\frac{\mathrm{4}}{−\mathrm{3}}=−\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${f}_{{max}} \left({x}\right)=−\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{2}} +\frac{\mathrm{16}}{\mathrm{3}}+\mathrm{5} \\ $$$$=−\frac{\mathrm{8}}{\mathrm{3}}+\frac{\mathrm{16}}{\mathrm{3}}+\mathrm{5}=\frac{\mathrm{23}}{\mathrm{3}} \\ $$
Commented by abwayh last updated on 09/Dec/17