Menu Close

Let-y-f-x-f-0-5-f-x-3x-2-0-2-f-x-dx-Find-the-maximum-value-of-y-f-x-




Question Number 25397 by naka3546 last updated on 09/Dec/17
Let  y  =  f (x)      f (0)  =  5  f ′(x)  =  −3x + 2 ∫_0  ^2 f (x) dx  Find  the  maximum  value  of   y  =  f(x) .
Lety=f(x)f(0)=5f(x)=3x+202f(x)dxFindthemaximumvalueofy=f(x).
Commented by prakash jain last updated on 09/Dec/17
c=2∫_0 ^2 f(x)dx  f^′ (x)=−3x+c  f(x)=−((3x^2 )/2)+cx+c_1   f(0)=5⇒c_1 =5  f(x)=−((3x^2 )/2)+cx+5  2∫_0 ^(  2) f(x)dx=2[−(x^3 /2)+((cx^2 )/2)+5x]_0 ^2   c=−8+4c+20  c=−4  f(x)=−((3x^2 )/2)−4x+5  quadratic with a<0 so maximum  value at x=((−b)/(2a))  x=(4/(−3))=−(4/3)  f_(max) (x)=−(3/2)((4/3))^2 +((16)/3)+5  =−(8/3)+((16)/3)+5=((23)/3)
c=202f(x)dxf(x)=3x+cf(x)=3x22+cx+c1f(0)=5c1=5f(x)=3x22+cx+5202f(x)dx=2[x32+cx22+5x]02c=8+4c+20c=4f(x)=3x224x+5quadraticwitha<0somaximumvalueatx=b2ax=43=43fmax(x)=32(43)2+163+5=83+163+5=233
Commented by abwayh last updated on 09/Dec/17
another way;  put f(x)=Ax^2 +Bx+c          f(0)=c=5  f ^� (x)=2Ax+B  ∵ f ^� (x)=−3x+2∫_0 ^2 f(x)dx  ∴2Ax+B=−3x+2∫_0 ^2 (Ax^2 +Bx+c)dx  2Ax+B=−3x+2[((Ax^3 )/3) +((Bx^2 )/2) +cx]_0 ^2   2Ax+B=−3x+((16A)/3) +4B +4c  (by compairing)  2A=−3 ⇒  A=((−3)/2)   B=((16A)/3) +4B+4c  B=((16)/3)(((−3)/2))+4B+4(5)  B=−8+4B+20  ⇒3B=−12                                      ⇒B=−4  ∴f(x)=((−3)/2) x^2 −4x+5  continue
anotherway;putf(x)=Ax2+Bx+cf(0)=c=5f´(x)=2Ax+Bf´(x)=3x+202f(x)dx2Ax+B=3x+202(Ax2+Bx+c)dx2Ax+B=3x+2[Ax33+Bx22+cx]022Ax+B=3x+16A3+4B+4c(bycompairing)2A=3A=32B=16A3+4B+4cB=163(32)+4B+4(5)B=8+4B+203B=12B=4f(x)=32x24x+5continue

Leave a Reply

Your email address will not be published. Required fields are marked *