Menu Close

let-y-gt-0-give-0-x-y-e-x-1-dx-at-form-of-series-




Question Number 48067 by maxmathsup by imad last updated on 18/Nov/18
let y>0 give ∫_0 ^∞    (x^y /(e^x −1))dx at form of series.
lety>0give0xyex1dxatformofseries.
Commented by maxmathsup by imad last updated on 19/Nov/18
let A(y) =∫_0 ^∞  (x^y /(e^x −1))dx  ⇒A(y) =∫_0 ^∞   ((e^(−x)  x^y )/(1−e^(−x) ))dx  = ∫_0 ^∞   e^(−x) x^y  (Σ_(n=0) ^∞  e^(−nx) )dx =Σ_(n=0) ^∞  ∫_0 ^∞  e^(−(n+1)x)  x^y dx  =_((n+1)x=t)    Σ_(n=0) ^∞  ∫_0 ^∞  e^(−t)  ((t/(n+1)))^y  (dt/(n+1))  =Σ_(n=0) ^∞   (1/((n+1)^(y+1) )) ∫_0 ^∞  e^(−t)  t^y  dt   but Γ(x)=∫_0 ^∞  t^(x−1) e^(−t) dt (x>0)⇒  ∫_0 ^∞  t^y e^(−t) dt =Γ(y+1)  and Σ_(n=0) ^∞  (1/((n+1)^(y+1) )) =Σ_(n=1) ^∞  (1/n^(y+1) ) =ξ(y+1) ⇒  A(y)=ξ(y+1)Γ(y+1) .
letA(y)=0xyex1dxA(y)=0exxy1exdx=0exxy(n=0enx)dx=n=00e(n+1)xxydx=(n+1)x=tn=00et(tn+1)ydtn+1=n=01(n+1)y+10ettydtbutΓ(x)=0tx1etdt(x>0)0tyetdt=Γ(y+1)andn=01(n+1)y+1=n=11ny+1=ξ(y+1)A(y)=ξ(y+1)Γ(y+1).

Leave a Reply

Your email address will not be published. Required fields are marked *