Menu Close

let-y-gt-0-give-0-x-y-e-x-1-dx-at-form-of-series-




Question Number 48067 by maxmathsup by imad last updated on 18/Nov/18
let y>0 give ∫_0 ^∞    (x^y /(e^x −1))dx at form of series.
$${let}\:{y}>\mathrm{0}\:{give}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{{y}} }{{e}^{{x}} −\mathrm{1}}{dx}\:{at}\:{form}\:{of}\:{series}. \\ $$
Commented by maxmathsup by imad last updated on 19/Nov/18
let A(y) =∫_0 ^∞  (x^y /(e^x −1))dx  ⇒A(y) =∫_0 ^∞   ((e^(−x)  x^y )/(1−e^(−x) ))dx  = ∫_0 ^∞   e^(−x) x^y  (Σ_(n=0) ^∞  e^(−nx) )dx =Σ_(n=0) ^∞  ∫_0 ^∞  e^(−(n+1)x)  x^y dx  =_((n+1)x=t)    Σ_(n=0) ^∞  ∫_0 ^∞  e^(−t)  ((t/(n+1)))^y  (dt/(n+1))  =Σ_(n=0) ^∞   (1/((n+1)^(y+1) )) ∫_0 ^∞  e^(−t)  t^y  dt   but Γ(x)=∫_0 ^∞  t^(x−1) e^(−t) dt (x>0)⇒  ∫_0 ^∞  t^y e^(−t) dt =Γ(y+1)  and Σ_(n=0) ^∞  (1/((n+1)^(y+1) )) =Σ_(n=1) ^∞  (1/n^(y+1) ) =ξ(y+1) ⇒  A(y)=ξ(y+1)Γ(y+1) .
$${let}\:{A}\left({y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{{y}} }{{e}^{{x}} −\mathrm{1}}{dx}\:\:\Rightarrow{A}\left({y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} \:{x}^{{y}} }{\mathrm{1}−{e}^{−{x}} }{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {x}^{{y}} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \right){dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({n}+\mathrm{1}\right){x}} \:{x}^{{y}} {dx} \\ $$$$=_{\left({n}+\mathrm{1}\right){x}={t}} \:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} \:\left(\frac{{t}}{{n}+\mathrm{1}}\right)^{{y}} \:\frac{{dt}}{{n}+\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{y}+\mathrm{1}} }\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} \:{t}^{{y}} \:{dt}\:\:\:{but}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\:\left({x}>\mathrm{0}\right)\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{t}^{{y}} {e}^{−{t}} {dt}\:=\Gamma\left({y}+\mathrm{1}\right)\:\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{y}+\mathrm{1}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{y}+\mathrm{1}} }\:=\xi\left({y}+\mathrm{1}\right)\:\Rightarrow \\ $$$${A}\left({y}\right)=\xi\left({y}+\mathrm{1}\right)\Gamma\left({y}+\mathrm{1}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *