Menu Close

let-y-x-x-x-2-calculate-dy-dx-




Question Number 42463 by abdo.msup.com last updated on 26/Aug/18
let y  =(√(x+(√(x+(√(x+2))))))  calculate  (dy/dx)
$${let}\:{y}\:\:=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\mathrm{2}}}} \\ $$$${calculate}\:\:\frac{{dy}}{{dx}} \\ $$
Commented by maxmathsup by imad last updated on 26/Aug/18
we have y^2  =x+(√(x+(√(x+2)) ))  ⇒(y^2 −x)^2  =x+(√(x+2)) ⇒  y^4 −2xy^2  +x^2  =x+(√(x+2))   let derivate ⇒  4y^′  y^3  −2(y^2  +2xyy′) +2x =1+(1/(2(√(x+2)))) ⇒  (4y^3  −4xy)y^′  −2y^2  +2x =1+(1/(2(√(x+2)))) ⇒  (4y^3 −4xy)y^′  =2y^2 −2x +1 +(1/(2(√(x+2)))) ⇒  y^′  =((2y^2 −2x+1+(1/(2(√(x+2)))))/(4y^3 −4xy)) .
$${we}\:{have}\:{y}^{\mathrm{2}} \:={x}+\sqrt{{x}+\sqrt{{x}+\mathrm{2}}\:}\:\:\Rightarrow\left({y}^{\mathrm{2}} −{x}\right)^{\mathrm{2}} \:={x}+\sqrt{{x}+\mathrm{2}}\:\Rightarrow \\ $$$${y}^{\mathrm{4}} −\mathrm{2}{xy}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \:={x}+\sqrt{{x}+\mathrm{2}}\:\:\:{let}\:{derivate}\:\Rightarrow \\ $$$$\mathrm{4}{y}^{'} \:{y}^{\mathrm{3}} \:−\mathrm{2}\left({y}^{\mathrm{2}} \:+\mathrm{2}{xyy}'\right)\:+\mathrm{2}{x}\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\mathrm{2}}}\:\Rightarrow \\ $$$$\left(\mathrm{4}{y}^{\mathrm{3}} \:−\mathrm{4}{xy}\right){y}^{'} \:−\mathrm{2}{y}^{\mathrm{2}} \:+\mathrm{2}{x}\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\mathrm{2}}}\:\Rightarrow \\ $$$$\left(\mathrm{4}{y}^{\mathrm{3}} −\mathrm{4}{xy}\right){y}^{'} \:=\mathrm{2}{y}^{\mathrm{2}} −\mathrm{2}{x}\:+\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\mathrm{2}}}\:\Rightarrow \\ $$$${y}^{'} \:=\frac{\mathrm{2}{y}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\mathrm{2}}}}{\mathrm{4}{y}^{\mathrm{3}} −\mathrm{4}{xy}}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 26/Aug/18
y^2 =x+(√(x+(√(x+2)) ))  2y(dy/dx)=(1+(1/(2(√(x+(√(x+2)))))))×(1+(1/(2(√(x+2)))))  (dy/dx)=(({1+(1/(2((√(x+(√(x+2))))))}×(1+(1/(2(√(x+2))))))/(2y))
$${y}^{\mathrm{2}} ={x}+\sqrt{{x}+\sqrt{{x}+\mathrm{2}}\:} \\ $$$$\mathrm{2}{y}\frac{{dy}}{{dx}}=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\sqrt{{x}+\mathrm{2}}}}\right)×\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\mathrm{2}}}\right) \\ $$$$\frac{{dy}}{{dx}}=\frac{\left\{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\left(\sqrt{{x}+\sqrt{{x}+\mathrm{2}}}\right.}\right\}×\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\mathrm{2}}}\right)}{\mathrm{2}{y}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *