Menu Close

Let-z-1-z-2-z-3-be-complex-numbers-not-all-real-such-that-z-1-z-2-z-3-1-and-2-z-1-z-2-z-3-3z-1-z-2-z-3-R-Prove-that-max-arg-z-1-arg-z-2-arg-z-3-pi-6-Wher




Question Number 21294 by Tinkutara last updated on 19/Sep/17
Let z_1 , z_2 , z_3  be complex numbers, not  all real, such that ∣z_1 ∣ = ∣z_2 ∣ = ∣z_3 ∣ = 1  and 2(z_1  + z_2  + z_3 ) − 3z_1 z_2 z_3  ∈ R.  Prove that max(arg z_1 , arg z_2 , arg z_3 ) ≥  (π/6) . Where 0 < arg(z_1 ), arg(z_2 ), arg(z_3 )  < 2π.
Letz1,z2,z3becomplexnumbers,notallreal,suchthatz1=z2=z3=1and2(z1+z2+z3)3z1z2z3R.Provethatmax(argz1,argz2,argz3)π6.Where0<arg(z1),arg(z2),arg(z3)<2π.
Answered by revenge last updated on 24/Sep/17
Let z_k =cos θ_k +isin θ_k ;k∈{1,2,3}  Now 2(sin θ_1 +sin θ_2 +sin θ_3 )=3sin (θ_1 +θ_2 +θ_3 )  Let it be 2Σsin θ=3sin Σθ  ⇒((sin Σθ)/(Σsin θ))=(2/3) ...(1)  Since by Jensen′s inequality, sin (((Σθ)/3))≥((Σsin θ)/3)  Taking Σθ=(π/2) so that LHS=(1/2), we get Σsin θ≤(3/2)  And from (1)⇒Σsin θ=(3/2)  This is only possible when θ_1 =θ_2 =θ_3 ; also Σθ=(π/2)  So maximum value of θ is (1/3)((π/2))=(π/6).
Letzk=cosθk+isinθk;k{1,2,3}Now2(sinθ1+sinθ2+sinθ3)=3sin(θ1+θ2+θ3)Letitbe2Σsinθ=3sinΣθsinΣθΣsinθ=23(1)SincebyJensensinequality,sin(Σθ3)Σsinθ3TakingΣθ=π2sothatLHS=12,wegetΣsinθ32Andfrom(1)Σsinθ=32Thisisonlypossiblewhenθ1=θ2=θ3;alsoΣθ=π2Somaximumvalueofθis13(π2)=π6.
Commented by Tinkutara last updated on 24/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *