Menu Close

Let-z-1-z-2-z-3-be-complex-numbers-such-that-i-z-1-z-2-z-3-1-ii-z-1-z-2-z-3-0-iii-z-1-2-z-2-2-z-3-2-0-Prove-that-for-all-n-2-z-1-n-z-2-n-z-3-




Question Number 21307 by Tinkutara last updated on 20/Sep/17
Let z_1 , z_2 , z_3  be complex numbers such  that  (i) ∣z_1 ∣ = ∣z_2 ∣ = ∣z_3 ∣ = 1  (ii) z_1  + z_2  + z_3  ≠ 0  (iii) z_1 ^2  + z_2 ^2  + z_3 ^2  = 0  Prove that for all n ≥ 2,  ∣z_1 ^n  + z_2 ^n  + z_3 ^n ∣ ∈ {0, 1, 2, 3}.
Letz1,z2,z3becomplexnumberssuchthat(i)z1=z2=z3=1(ii)z1+z2+z30(iii)z12+z22+z32=0Provethatforalln2,z1n+z2n+z3n{0,1,2,3}.
Commented by Tinkutara last updated on 25/Sep/17
help pls
helppls
Commented by Tinkutara last updated on 24/Sep/17
help pls
helppls
Commented by Tinkutara last updated on 26/Sep/17
help pls
helppls
Commented by Tinkutara last updated on 27/Sep/17
Let z_k =cos θ_k +isin θ_k ; k∈{1,2,3}  Given that z_1 ^2 +z_2 ^2 +z_3 ^2 =0  cos 2θ_1 +cos 2θ_2 =−cos 2θ_3   sin 2θ_1 +sin 2θ_2 =−sin 2θ_3   Squaring and adding,  2+2cos 2(θ_1 −θ_2 )=1  θ_1 −θ_2 =kπ±(π/3)  So let z_1 ^n =cos nθ+isin nθ  z_2 ^n =cos n((π/3)+θ)+isin n((π/3)+θ)  z_3 ^n =cos n(((2π)/3)+θ)+isin n(((2π)/3)+θ)  ∴∣z_1 ^n +z_2 ^n +z_3 ^n ∣=(√(3+2Σ_(cyc) cos n(θ_1 −θ_2 )))  Now I only got 0 in all cases. Can  someone continue after this?
Letzk=cosθk+isinθk;k{1,2,3}Giventhatz12+z22+z32=0cos2θ1+cos2θ2=cos2θ3sin2θ1+sin2θ2=sin2θ3Squaringandadding,2+2cos2(θ1θ2)=1θ1θ2=kπ±π3Soletz1n=cosnθ+isinnθz2n=cosn(π3+θ)+isinn(π3+θ)z3n=cosn(2π3+θ)+isinn(2π3+θ)∴∣z1n+z2n+z3n∣=3+2cyccosn(θ1θ2)NowIonlygot0inallcases.Cansomeonecontinueafterthis?
Commented by Tinkutara last updated on 22/Mar/18
?

Leave a Reply

Your email address will not be published. Required fields are marked *