Menu Close

let-z-2-3-i-2-3-calculate-z-n-and-arg-z-n-




Question Number 41519 by maxmathsup by imad last updated on 08/Aug/18
let z=(√(2−(√3)))  −i(√(2+(√3)))  calculate ∣z^n ∣  and arg(z^n )
letz=23i2+3calculateznandarg(zn)
Answered by alex041103 last updated on 09/Aug/18
We know that ∣z^n ∣=∣z∣^n .  ⇒∣z^n ∣=∣z∣^n =(Re(z)^2 +Im(z)^2 )^(n/2) =  =(2−(√3)+2+(√3))^(n/2) =2^n   Also arg(z^n )≡n arg(z) (mod 2π).  ⇒arg(z^n )≡n arg(z) (mod 2π)  ≡n (2π−arctan(((√(2+(√3)))/( (√(2−(√3)))))))  ((√(2+(√3)))/( (√(2−(√3))))) = ((√(2+(√3)))/( (√(2−(√3))))) ((√(2+(√3)))/( (√(2+(√3))))) =((2+(√3))/( (√(4−3))))=2+(√3)  ⇒∣z^n ∣=2^n  and arg(z^n )=n(2π−arctan(2+(√3))) (mod 2π)
Weknowthatzn∣=∣zn.⇒∣zn∣=∣zn=(Re(z)2+Im(z)2)n/2==(23+2+3)n/2=2nAlsoarg(zn)narg(z)(mod2π).arg(zn)narg(z)(mod2π)n(2πarctan(2+323))2+323=2+3232+32+3=2+343=2+3⇒∣zn∣=2nandarg(zn)=n(2πarctan(2+3))(mod2π)
Answered by maxmathsup by imad last updated on 09/Aug/18
we have cos^2 ((π/(12)))=((1+cos((π/6)))/2) =((1+((√3)/2))/2) =((2+(√3))/4) ⇒cos((π/(12)))=((√(2+(√3)))/2) also  we have sin^2 ((π/(12)))=((1−cos((π/6)))/2) .((1−((√3)/2))/2) =((2−(√3))/4) ⇒sin((π/(12)))=((√(2−(√3)))/2) ⇒  z =2sin((π/(12)))−2i cos((π/(12))) =2 cos((π/2)−(π/(12)))−2i sin((π/2)−(π/(12)))  =2 cos(((5π)/(12)))−2isin(((5π)/(12))) = 2 e^(−i((5π)/(12)))   ⇒ z^n  =2^n  e^(−n((i5π)/(12)))  ⇒  ∣z^n ∣ =2^n   and arg(z^n )≡−((5nπ)/(12))[2π] .
wehavecos2(π12)=1+cos(π6)2=1+322=2+34cos(π12)=2+32alsowehavesin2(π12)=1cos(π6)2.1322=234sin(π12)=232z=2sin(π12)2icos(π12)=2cos(π2π12)2isin(π2π12)=2cos(5π12)2isin(5π12)=2ei5π12zn=2neni5π12zn=2nandarg(zn)5nπ12[2π].

Leave a Reply

Your email address will not be published. Required fields are marked *