Menu Close

let-z-a-ib-find-f-z-z-x-2-dx-




Question Number 36915 by maxmathsup by imad last updated on 07/Jun/18
let z =a+ib   find  f(z) = ∫_(−∞) ^(+∞)  z^(−x^2 ) dx
letz=a+ibfindf(z)=+zx2dx
Commented by math khazana by abdo last updated on 02/Aug/18
we have ∣z∣=(√(a^2  +b^2 )) ⇒z =(√(a^2  +b^2 ))( (a/( (√(a^2 +b^2 )))) +(b/( (√(a^2  +b^2 )))))⇒  =r e^(iθ)  ⇒ r =(√(a^2 +b^2 )) and tanθ=(b/a)(we take a≠o)⇒  θ=arctan((b/a)) ⇒z=(√(a^2 +b^2 ))e^(i arctan((b/a)))  ⇒  f(z) = ∫_(−∞) ^(+∞)   (re^(i θ) )^(−x^2 ) dx  = ∫_(−∞) ^(+∞)   (e^(ln(r)+i θ) )^(−x^2 ) dx   ∫_(−∞) ^(+∞)    e^(−(ln(r)+iθ))x^2 ) dx changement  (√(ln(r)+iθ))x=u give  f(z) =∫_(−∞) ^(+∞)     e^(−u^2 )    (du/( (√(ln(r)+iθ))))  =(π/( (√((1/2)ln(a^2 +b^2 ) +iarctan((b/a))))))  wih z=a+ib  and a≠0
wehavez∣=a2+b2z=a2+b2(aa2+b2+ba2+b2)=reiθr=a2+b2andtanθ=ba(wetakeao)θ=arctan(ba)z=a2+b2eiarctan(ba)f(z)=+(reiθ)x2dx=+(eln(r)+iθ)x2dx+e(ln(r)+iθ))x2dxchangementln(r)+iθx=ugivef(z)=+eu2duln(r)+iθ=π12ln(a2+b2)+iarctan(ba)wihz=a+ibanda0

Leave a Reply

Your email address will not be published. Required fields are marked *