Menu Close

let-z-a-ib-find-f-z-z-x-2-dx-




Question Number 36915 by maxmathsup by imad last updated on 07/Jun/18
let z =a+ib   find  f(z) = ∫_(−∞) ^(+∞)  z^(−x^2 ) dx
$${let}\:{z}\:={a}+{ib}\:\:\:{find}\:\:{f}\left({z}\right)\:=\:\int_{−\infty} ^{+\infty} \:{z}^{−{x}^{\mathrm{2}} } {dx} \\ $$
Commented by math khazana by abdo last updated on 02/Aug/18
we have ∣z∣=(√(a^2  +b^2 )) ⇒z =(√(a^2  +b^2 ))( (a/( (√(a^2 +b^2 )))) +(b/( (√(a^2  +b^2 )))))⇒  =r e^(iθ)  ⇒ r =(√(a^2 +b^2 )) and tanθ=(b/a)(we take a≠o)⇒  θ=arctan((b/a)) ⇒z=(√(a^2 +b^2 ))e^(i arctan((b/a)))  ⇒  f(z) = ∫_(−∞) ^(+∞)   (re^(i θ) )^(−x^2 ) dx  = ∫_(−∞) ^(+∞)   (e^(ln(r)+i θ) )^(−x^2 ) dx   ∫_(−∞) ^(+∞)    e^(−(ln(r)+iθ))x^2 ) dx changement  (√(ln(r)+iθ))x=u give  f(z) =∫_(−∞) ^(+∞)     e^(−u^2 )    (du/( (√(ln(r)+iθ))))  =(π/( (√((1/2)ln(a^2 +b^2 ) +iarctan((b/a))))))  wih z=a+ib  and a≠0
$${we}\:{have}\:\mid{z}\mid=\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }\:\Rightarrow{z}\:=\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }\left(\:\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:+\frac{{b}}{\:\sqrt{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }}\right)\Rightarrow \\ $$$$={r}\:{e}^{{i}\theta} \:\Rightarrow\:{r}\:=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:{and}\:{tan}\theta=\frac{{b}}{{a}}\left({we}\:{take}\:{a}\neq{o}\right)\Rightarrow \\ $$$$\theta={arctan}\left(\frac{{b}}{{a}}\right)\:\Rightarrow{z}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{e}^{{i}\:{arctan}\left(\frac{{b}}{{a}}\right)} \:\Rightarrow \\ $$$${f}\left({z}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\left({re}^{{i}\:\theta} \right)^{−{x}^{\mathrm{2}} } {dx} \\ $$$$=\:\int_{−\infty} ^{+\infty} \:\:\left({e}^{{ln}\left({r}\right)+{i}\:\theta} \right)^{−{x}^{\mathrm{2}} } {dx} \\ $$$$\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{\left.−\left({ln}\left({r}\right)+{i}\theta\right)\right){x}^{\mathrm{2}} } {dx}\:{changement} \\ $$$$\sqrt{{ln}\left({r}\right)+{i}\theta}{x}={u}\:{give} \\ $$$${f}\left({z}\right)\:=\int_{−\infty} ^{+\infty} \:\:\:\:{e}^{−{u}^{\mathrm{2}} } \:\:\:\frac{{du}}{\:\sqrt{{ln}\left({r}\right)+{i}\theta}} \\ $$$$=\frac{\pi}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\:+{iarctan}\left(\frac{{b}}{{a}}\right)}}\:\:{wih}\:{z}={a}+{ib} \\ $$$${and}\:{a}\neq\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *