let-z-a-ib-find-f-z-z-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36915 by maxmathsup by imad last updated on 07/Jun/18 letz=a+ibfindf(z)=∫−∞+∞z−x2dx Commented by math khazana by abdo last updated on 02/Aug/18 wehave∣z∣=a2+b2⇒z=a2+b2(aa2+b2+ba2+b2)⇒=reiθ⇒r=a2+b2andtanθ=ba(wetakea≠o)⇒θ=arctan(ba)⇒z=a2+b2eiarctan(ba)⇒f(z)=∫−∞+∞(reiθ)−x2dx=∫−∞+∞(eln(r)+iθ)−x2dx∫−∞+∞e−(ln(r)+iθ))x2dxchangementln(r)+iθx=ugivef(z)=∫−∞+∞e−u2duln(r)+iθ=π12ln(a2+b2)+iarctan(ba)wihz=a+ibanda≠0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: cosxcos-pi-6-sin-pi-6-sinx-pi-4-Next Next post: let-z-r-e-i-fins-f-z-z-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.