Menu Close

Let-z-C-so-1-z-2-lt-1-Prove-that-2-1-z-2-1-




Question Number 55671 by gunawan last updated on 01/Mar/19
Let z ∈ C , so ∣1+z^2 ∣<1.  Prove that 2∣1+z^2 ∣≥1
$$\mathrm{Let}\:\mathrm{z}\:\in\:\mathbb{C}\:,\:\mathrm{so}\:\mid\mathrm{1}+{z}^{\mathrm{2}} \mid<\mathrm{1}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{2}\mid\mathrm{1}+{z}^{\mathrm{2}} \mid\geqslant\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *