Menu Close

Let-z-is-complex-number-and-satisfy-z-2017-1-z-1-Find-1-z-1-z-2-1-z-3-1-z-2016-




Question Number 52498 by Joel578 last updated on 09/Jan/19
Let z is complex number and satisfy z^(2017)  = 1,  z ≠ 1  Find (1 + z)(1 + z^2 )(1 + z^3 )…(1 + z^(2016) )
Letziscomplexnumberandsatisfyz2017=1,z1Find(1+z)(1+z2)(1+z3)(1+z2016)
Commented by mr W last updated on 09/Jan/19
P=(1 + z)(1 + z^2 )(1 + z^3 )…(1 + z^(2016) )  =1+z+z^2 +...+z^(1+2+3+...+2016)   =1+z+z^2 +...+z^((2016×2017)/2)   =1+z+z^2 +...+z^(1008×2017)   =((1−z^(1008×2017+1) )/(1−z))  =((1−z(z^(2017) )^(1008) )/(1−z))  =((1−z×1^(1008) )/(1−z))  =((1−z)/(1−z))  =1
P=(1+z)(1+z2)(1+z3)(1+z2016)=1+z+z2++z1+2+3++2016=1+z+z2++z2016×20172=1+z+z2++z1008×2017=1z1008×2017+11z=1z(z2017)10081z=1z×110081z=1z1z=1
Answered by MJS last updated on 09/Jan/19
z^(2n+1) =1, z≠1: Π_(k=1) ^(2n) (1+z^k )=1
z2n+1=1,z1:2nk=1(1+zk)=1
Commented by malwaan last updated on 10/Jan/19
how?
how?

Leave a Reply

Your email address will not be published. Required fields are marked *