Menu Close

Let-z-is-complex-number-and-satisfy-z-2017-1-z-1-Find-1-z-1-z-2-1-z-3-1-z-2016-




Question Number 52498 by Joel578 last updated on 09/Jan/19
Let z is complex number and satisfy z^(2017)  = 1,  z ≠ 1  Find (1 + z)(1 + z^2 )(1 + z^3 )…(1 + z^(2016) )
$$\mathrm{Let}\:{z}\:\mathrm{is}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{and}\:\mathrm{satisfy}\:{z}^{\mathrm{2017}} \:=\:\mathrm{1},\:\:{z}\:\neq\:\mathrm{1} \\ $$$$\mathrm{Find}\:\left(\mathrm{1}\:+\:{z}\right)\left(\mathrm{1}\:+\:{z}^{\mathrm{2}} \right)\left(\mathrm{1}\:+\:{z}^{\mathrm{3}} \right)\ldots\left(\mathrm{1}\:+\:{z}^{\mathrm{2016}} \right) \\ $$
Commented by mr W last updated on 09/Jan/19
P=(1 + z)(1 + z^2 )(1 + z^3 )…(1 + z^(2016) )  =1+z+z^2 +...+z^(1+2+3+...+2016)   =1+z+z^2 +...+z^((2016×2017)/2)   =1+z+z^2 +...+z^(1008×2017)   =((1−z^(1008×2017+1) )/(1−z))  =((1−z(z^(2017) )^(1008) )/(1−z))  =((1−z×1^(1008) )/(1−z))  =((1−z)/(1−z))  =1
$${P}=\left(\mathrm{1}\:+\:{z}\right)\left(\mathrm{1}\:+\:{z}^{\mathrm{2}} \right)\left(\mathrm{1}\:+\:{z}^{\mathrm{3}} \right)\ldots\left(\mathrm{1}\:+\:{z}^{\mathrm{2016}} \right) \\ $$$$=\mathrm{1}+{z}+{z}^{\mathrm{2}} +…+{z}^{\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{2016}} \\ $$$$=\mathrm{1}+{z}+{z}^{\mathrm{2}} +…+{z}^{\frac{\mathrm{2016}×\mathrm{2017}}{\mathrm{2}}} \\ $$$$=\mathrm{1}+{z}+{z}^{\mathrm{2}} +…+{z}^{\mathrm{1008}×\mathrm{2017}} \\ $$$$=\frac{\mathrm{1}−{z}^{\mathrm{1008}×\mathrm{2017}+\mathrm{1}} }{\mathrm{1}−{z}} \\ $$$$=\frac{\mathrm{1}−{z}\left({z}^{\mathrm{2017}} \right)^{\mathrm{1008}} }{\mathrm{1}−{z}} \\ $$$$=\frac{\mathrm{1}−{z}×\mathrm{1}^{\mathrm{1008}} }{\mathrm{1}−{z}} \\ $$$$=\frac{\mathrm{1}−{z}}{\mathrm{1}−{z}} \\ $$$$=\mathrm{1} \\ $$
Answered by MJS last updated on 09/Jan/19
z^(2n+1) =1, z≠1: Π_(k=1) ^(2n) (1+z^k )=1
$${z}^{\mathrm{2}{n}+\mathrm{1}} =\mathrm{1},\:{z}\neq\mathrm{1}:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\prod}}\left(\mathrm{1}+{z}^{{k}} \right)=\mathrm{1} \\ $$
Commented by malwaan last updated on 10/Jan/19
how?
$$\mathrm{how}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *