Menu Close

let-z-r-e-i-fins-f-z-z-x-2-dx-




Question Number 36916 by maxmathsup by imad last updated on 07/Jun/18
let z=r e^(iθ)     fins f(z) = ∫_(−∞) ^(+∞)   z^(−x^2 ) dx
letz=reiθfinsf(z)=+zx2dx
Commented by math khazana by abdo last updated on 09/Jun/18
f(z) = ∫_(−∞) ^(+∞)   (r e^(iθ) )^(−x^2 ) dx  =∫_(−∞) ^(+∞)   { e^(ln(r) +iθ) }^(−x^2 ) dx  = ∫_(−∞) ^(+∞)   e^(−(ln(r) +iθ)x^2  )  dx  but changement   (√(ln(r) +iθ))x =t give  f(z) = (1/( (√(ln(r) +iθ)))) ∫_(−∞) ^(+∞)    e^(−t^2 ) dt  =((√π)/( (√(ln(r)+iθ)))) .
f(z)=+(reiθ)x2dx=+{eln(r)+iθ}x2dx=+e(ln(r)+iθ)x2dxbutchangementln(r)+iθx=tgivef(z)=1ln(r)+iθ+et2dt=πln(r)+iθ.

Leave a Reply

Your email address will not be published. Required fields are marked *