Menu Close

letf-x-2x-1-x-2-x-2-x-1-1-calculate-f-n-x-2-find-f-n-0-3-developp-f-at-integr-serie-




Question Number 38521 by math khazana by abdo last updated on 26/Jun/18
letf(x) = ((2x+1)/((x−2)(x^2  +x+1)))  1) calculate f^((n)) (x)  2) find f^((n)) (0)  3) developp f at integr serie.  (
letf(x)=2x+1(x2)(x2+x+1)1)calculatef(n)(x)2)findf(n)(0)3)developpfatintegrserie.(
Commented by abdo mathsup 649 cc last updated on 28/Jun/18
1) let drcompose f inside C  f(x)= (a/(x−2)) +(b/(x−j)) +(c/(x−j^− ))  withj=e^((i2π)/3)   f(x)=((2x+1)/((x−2)(x−j)(x−j^− )))  a =lim_(x→2) (x−2)f(x)= (5/7)  b=lim_(x→j)  (x−j)f(x)= ((2j+1)/((j−2)2i((√3)/2))) =((2j+1)/(i(√3)(j−2)))  c=lim_(x→j^− ) (x−j^− )f(x)= ((2j^− +1)/((j^− −2)(−2i((√3)/2))))  =−((2j^−  +1)/(i(√3)(j^− −2)))  ⇒f(x)= (5/(7(x−2))) +((2j+1)/(i(√3)(j−2)(x−j)))  −((2j^(− )  +1)/(i(√3)(j^− −2)(x−j^− ))) ⇒  f^((n)) (x) = (5/7) (((−1)^n n!)/((x−2)^(n+1) ))  +((2j+1)/(i(√3)(j−2))) (((−1)^n n!)/((x−j)^(n+1) ))  −((2j^−  +1)/(i(√3)(j^− −2))) (((−1)^n n!)/((x−j^− )^(n+1) )) but  2)f^((n)) (0) = ((5(−1)^n n!)/(7(−2)^(n+1) )) +((2j+1)/(i(√3)(j−2))) (((−1)^n n!)/((−j)^(n+1) ))  −((2j^− +1)/(i(√3)(j^− −2)))(((−1)^n n!)/((−j^− )^(n+1) ))   =−(5/7) ((n!)/2^(n+1) ) −((2j+1)/(i(√3)(j−2))) ((n!)/j^(n+1) ) +((2j^−  +1)/(i(√3)(j^− −2))) ((n!)/((j^− )^(n+1) ))  3) f(x)=Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   =Σ_(n=0) ^∞   { −(5/(7 .2^(n+1) )) −((2j+1)/(i(√3)(j−2)j^(n+1) )) +((2j^−  +1)/(i(√3)(j^− −2)(j^− )^(n+1) ))}x^n
1)letdrcomposefinsideCf(x)=ax2+bxj+cxjwithj=ei2π3f(x)=2x+1(x2)(xj)(xj)a=limx2(x2)f(x)=57b=limxj(xj)f(x)=2j+1(j2)2i32=2j+1i3(j2)c=limxj(xj)f(x)=2j+1(j2)(2i32)=2j+1i3(j2)f(x)=57(x2)+2j+1i3(j2)(xj)2j+1i3(j2)(xj)f(n)(x)=57(1)nn!(x2)n+1+2j+1i3(j2)(1)nn!(xj)n+12j+1i3(j2)(1)nn!(xj)n+1but2)f(n)(0)=5(1)nn!7(2)n+1+2j+1i3(j2)(1)nn!(j)n+12j+1i3(j2)(1)nn!(j)n+1=57n!2n+12j+1i3(j2)n!jn+1+2j+1i3(j2)n!(j)n+13)f(x)=n=0f(n)(0)n!xn=n=0{57.2n+12j+1i3(j2)jn+1+2j+1i3(j2)(j)n+1}xn

Leave a Reply

Your email address will not be published. Required fields are marked *