Menu Close

Light-version-of-Q-13724-Expansion-of-100-has-24-0-s-at-the-end-Find-the-first-non-zero-digit-from-right-100-d000-00-What-is-the-value-of-d-




Question Number 15292 by RasheedSoomro last updated on 09/Jun/17
Light version of Q#13724  Expansion of 100! has 24, 0′s  at the end.  Find the first non-zero digit from right.  100!=.....d000...00  What is the value of d?
You can't use 'macro parameter character #' in math modeExpansionof100!has24,0sattheend.Findthefirstnonzerodigitfromright.100!=..d00000Whatisthevalueofd?
Answered by RasheedSoomro last updated on 11/Jun/17
100! has 24   0′s from right.  p=((100!)/(10^(24) )) has no zero at the end.  ∴  First non-zero digit of 100!                     =unit digit of  p  ∴  p≡d(mod 10)  Simplifying   p=((100!)/(10^(24) ))=((100!)/(2^(24) ×5^(24) ))          10^(24) =2^(24) ×5^(24) =2^(6•) (5.10.15...100)             All the 24   5′s have come in 5.10...100           ^• Also some 2′s have come:             One 2 in each multiple of 10                10  2′s              One 2 extra  in each multiple of 20   5   2′s              One 2 extra  in each multiple of 40   2   2′s              One 2 extra  in each multiple of 80   1   2′s         _(−)               Total(included in 5.10...100)             18  2′s                                                  Remaining  24−18=6             So now p=((100!)/(10^(24) ))=((100!)/(2^(24) ×5^(24) ))=((100!)/(2^6 (5.10....100)))             p=(1/(2.2^5 )){(1.2.3.4)(6.7.8.9)...(96.97.98.99}          p={(((1.2.3.4)/2))(6.7.8.9).(11.12.13.14)(((16.17.18.19)/2))}                ×{(21.22.23.24)(26.27.28.29).(31.32.33.34)(((36.37.38.39)/2))}              ...×{(81.82.83.84)(86.87.88.89).(91.92.93.94)(((96.97.98.99)/2))}       Account of 2^6 : One 2 comes in read bracket                                                       5    2′s   come in five blue brackets                                              (one blue bracket is  per each 20)  Now we can verify/prove the following congruences:  ((1.2.3.4)/2)≡2(mod 10)   {: ((6.7.8.9)),(⋮),((91.92.93.94)) }≡4(mod 10)   [14 congruencs]  (5k+1)(5k+2)(5k+3)(5k+4)≡4(mod 10)  { ((^• See Answer of mrW1 ⌉)),((to Q#14614 or an)),(( alternative proof in)),((the comment below.)) :}   {: (((16.17.18.19)/2)),(⋮),(((96.97.98.99)/2)) }≡2   [5 congruences]  {(5k+1)(5k+2)(5k+3)(5k+4)}/2≡4(mod 10) { ((^∗ Fo proof see the)),((comment below.)) :}  Multiplying all the above congruences  p≡2.4^(14) .2^5 (mod 10)      4^(14) ≡6(mod 10)  [4^(2k) ≡6(mod 10)]       2^5 ≡32≡2(mod 10)  p≡2.6.2(mod 10)  p≡4(mod 10)  Hence the require non-zero digit is 4   It′s  only accedent that the answer           is correct! Actually there′s a fault in  the  logic. I′ll try to correct my logic.  Please stay with me!
100!has240sfromright.p=100!1024hasnozeroattheend.Firstnonzerodigitof100!=unitdigitofppd(mod10)Simplifyingp=100!1024=100!224×5241024=224×524=26(5.10.15100)Allthe245shavecomein5.10100Alsosome2shavecome:One2ineachmultipleof10102sOne2extraineachmultipleof2052sOne2extraineachmultipleof4022sOne2extraineachmultipleof8012sTotal(includedin5.10100)182sRemaining2418=6Sonowp=100!1024=100!224×524=100!26(5.10.100)p=12.25{(1.2.3.4)(6.7.8.9)(96.97.98.99}p={(1.2.3.42)(6.7.8.9).(11.12.13.14)(16.17.18.192)}×{(21.22.23.24)(26.27.28.29).(31.32.33.34)(36.37.38.392)}×{(81.82.83.84)(86.87.88.89).(91.92.93.94)(96.97.98.992)}Accountof26:One2comesinreadbracket52scomeinfivebluebrackets(onebluebracketispereach20)Nowwecanverify/provethefollowingcongruences:1.2.3.422(mod10)6.7.8.991.92.93.94}4(mod10)[14congruencs]You can't use 'macro parameter character #' in math mode(16.17.18.19)/2(96.97.98.99)/2}2[5congruences]{(5k+1)(5k+2)(5k+3)(5k+4)}/24(mod10){Foproofseethecommentbelow.Multiplyingalltheabovecongruencesp2.414.25(mod10)4146(mod10)[42k6(mod10)]25322(mod10)p2.6.2(mod10)p4(mod10)Hencetherequirenonzerodigitis4\boldsymbolIt\boldsymbols\boldsymbolonly\boldsymbolaccedent\boldsymbolthat\boldsymbolthe\boldsymbolanswer\boldsymbolis\boldsymbolcorrect!\boldsymbolActually\boldsymbolthere\boldsymbols\boldsymbola\boldsymbolfault\boldsymbolin\boldsymbolthe\boldsymbollogic.\boldsymbolI\boldsymbolll\boldsymboltry\boldsymbolto\boldsymbolcorrect\boldsymbolmy\boldsymbollogic.\boldsymbolPlease\boldsymbolstay\boldsymbolwith\boldsymbolme!
Commented by RasheedSoomro last updated on 09/Jun/17
 •(5k+1)(5k+2)(5k+3)(5k+4)(mod 10)=4  Case-1: k is even.let it′s equal to 2m  ∀m∈Z  =(5(2m)+1)(5(2m)+2)(5(2m)+3)(5(2m)+4)(mod 10)  =10000m^4 +10000m^3 +3500m^2 +500m+24(mod 10)  =(10000m^4 +10000m^3 +3500m^2 +500m+20)+4(mod 10)  =10(1000m^4 +1000m^3 +350m^2 +50m+2)+4(mod 10)  =4(mod 10)    Case-2:k is odd.Let it′s equal to 2m+1  (5(2m+1)+1)(5(2m+1)+2)(5(2m+1)+3)(5(2m+1)+4)(mod 10)  (10m+6)(10m+7)(10m+8)(10m+9)(mod 10)  10000m^4 +30000m^3 +33500m^2 +16500m+3024(mod 10)  (10000m^4 +30000m^3 +33500m^2 +16500m+3020)+4(mod 10)  10(1000m^4 +3000m^3 +3350m^2 +1650m+302)+4(mod 10)  =4(mod 10     Hence for all k∈Z ,the proposition itrue.     ∗{(5k+1)(5k+2)(5k+3)(5k+4)/2}  (mod 10)=2   Case-1:k ieven.Let it′s equal to  2m  ={(5(2m)+1)(5(2m)+2)(5(2m)+3)(5(2m)+4)/2}(mod 10)  =5000m^4 +5000m^3 +1750m^2 +250m+12(mod 10)  =10(500m^4 +500m^3 +175m^2 +25m+1)+2(mod 10)  =2(mod 10)   Case-2:k is odd.Let it′s equal to  2m+1  =(5(2m+1)+1)(5(2m+1)+2)(5(2m+1)+3)(5(2m+1)+4)/2(mod 10)  =(10m+6)(10m+7)(10m+8)(10m+9)/2(mod 10)  =(10000m^4 +30000m^3 +33500m^2 +16500m+3024)/2(mod 10)  =5000m^4 +15000m^3 +16750m^2 +8250m+1512(mod 10)  =(5000m^4 +15000m^3 +16750m^2 +8250m+1510)+2(mod 2)  =2(mod 2)
(5k+1)(5k+2)(5k+3)(5k+4)(mod10)=4Case1:kiseven.letitsequalto2mmZ=(5(2m)+1)(5(2m)+2)(5(2m)+3)(5(2m)+4)(mod10)=10000m4+10000m3+3500m2+500m+24(mod10)=(10000m4+10000m3+3500m2+500m+20)+4(mod10)=10(1000m4+1000m3+350m2+50m+2)+4(mod10)=4(mod10)Case2:kisodd.Letitsequalto2m+1(5(2m+1)+1)(5(2m+1)+2)(5(2m+1)+3)(5(2m+1)+4)(mod10)(10m+6)(10m+7)(10m+8)(10m+9)(mod10)10000m4+30000m3+33500m2+16500m+3024(mod10)(10000m4+30000m3+33500m2+16500m+3020)+4(mod10)10(1000m4+3000m3+3350m2+1650m+302)+4(mod10)=4(mod10HenceforallkZ,thepropositionitrue.{(5k+1)(5k+2)(5k+3)(5k+4)/2}(mod10)=2Case1:kieven.Letitsequalto2m={(5(2m)+1)(5(2m)+2)(5(2m)+3)(5(2m)+4)/2}(mod10)=5000m4+5000m3+1750m2+250m+12(mod10)=10(500m4+500m3+175m2+25m+1)+2(mod10)=2(mod10)Case2:kisodd.Letitsequalto2m+1=(5(2m+1)+1)(5(2m+1)+2)(5(2m+1)+3)(5(2m+1)+4)/2(mod10)=(10m+6)(10m+7)(10m+8)(10m+9)/2(mod10)=(10000m4+30000m3+33500m2+16500m+3024)/2(mod10)=5000m4+15000m3+16750m2+8250m+1512(mod10)=(5000m4+15000m3+16750m2+8250m+1510)+2(mod2)=2(mod2)
Commented by mrW1 last updated on 09/Jun/17
(5k+1)(5k+2)(5k+3)(5k+4)  =(5k+1)(5k+4)(5k+3)(5k+2)  = [(5k)^2 +5(5k)+4][(5k)^2 +5(5k)+6]  =[(5k)^2 +5(5k)]^2 +10[(5k)^2 +5(5k)]+24  =625[k(k+1)]^2 +250[k(k+1)]+24  =2500[((k(k+1))/2)]^2 +500[((k(k+1))/2)]+24  since one of k and k+1 is even,  ((k(k+1))/2) is integer  ⇒4 (mod 10)
(5k+1)(5k+2)(5k+3)(5k+4)=(5k+1)(5k+4)(5k+3)(5k+2)=[(5k)2+5(5k)+4][(5k)2+5(5k)+6]=[(5k)2+5(5k)]2+10[(5k)2+5(5k)]+24=625[k(k+1)]2+250[k(k+1)]+24=2500[k(k+1)2]2+500[k(k+1)2]+24sinceoneofkandk+1iseven,k(k+1)2isinteger4(mod10)
Commented by RasheedSoomro last updated on 09/Jun/17
Your method is better Sir! It was also used   in your answer of Q#14614.  I merely tried to use different approach!
YourmethodisbetterSir!ItwasalsousedYou can't use 'macro parameter character #' in math modeImerelytriedtousedifferentapproach!
Commented by mrW1 last updated on 09/Jun/17
congratulation to you for solving this  light version! the last non−zero digit  of 100! is indeed 4.  i hope you will crack 1000! soon!
congratulationtoyouforsolvingthislightversion!thelastnonzerodigitof100!isindeed4.ihopeyouwillcrack1000!soon!
Commented by RasheedSoomro last updated on 09/Jun/17
 Please help me in finding error in answer of Q#13724.  In one of its answers I have used same logic.  Bu the answer is wrong!  Mr prakash jain & mrW1  Do you know any standard method of such questions?  If you do please do share.
You can't use 'macro parameter character #' in math modeInoneofitsanswersIhaveusedsamelogic.Butheansweriswrong!Mrprakashjain&mrW1Doyouknowanystandardmethodofsuchquestions?Ifyoudopleasedoshare.
Commented by mrW1 last updated on 09/Jun/17
I definitively don′t know any standard  methods for solving such questions.  I am learning, also from posts such   like yours.
Idefinitivelydontknowanystandardmethodsforsolvingsuchquestions.Iamlearning,alsofrompostssuchlikeyours.
Commented by prakash jain last updated on 10/Jun/17
Actually I don′t know a short cut  method to this question.  I posted this question to get some  ideas.
ActuallyIdontknowashortcutmethodtothisquestion.Ipostedthisquestiontogetsomeideas.
Commented by RasheedSoomro last updated on 10/Jun/17
Thanks of you both!
Thanksofyouboth!
Answered by RasheedSoomro last updated on 11/Jun/17
Easy way  100! has 24  0′s from right.   p=((100!)/(10^(24) ))  has no zeo from right  ∴  first non-zero digit in 100! from right                  = unit digit in p  ∴  p≡d(mod 10)  p=((100!)/(10^(24) ))=((100!)/(2^(24) ×5^(24) ))=((100!)/(2^6 (5.10....100)))  [18   2′s from 2^(24)  have come in 5.10....100]     =(1/2^6 ){(1.2.3.4)(6.7.8.9)...(96.97.98.99}      p≡d(mod 10)⇒     (1/2^6 ){(1.2.3.4)(6.7.8.9)...(96.97.98.99}≡d(mod 10)      (1/2^6 )(4)^(20) ≡d(mod 10)    [∵ Each bracket≡4(mod 10) Total brackets=20]     (2^(40) /2^6 )≡d(mod 10)       d≡2^(34) (mod 10)  Verify that:         2^4 ≡6(mod 10         (2^4 )^8 ≡6^8 ≡6(mod 10)           2^(32) .2^2 ≡6.2^2 ≡4(mod 10)          2^(34) ≡4(mod 10)  Hence          d≡2^(34) ≡4(mod 10)          d≡4(mod 10)     Wrong logic! Accedently correct answer!         I′ll try to correct my logic.  Please stay with me!
Easyway100!has240sfromright.p=100!1024hasnozeofromrightfirstnonzerodigitin100!fromright=unitdigitinppd(mod10)p=100!1024=100!224×524=100!26(5.10.100)[182sfrom224havecomein5.10.100]=126{(1.2.3.4)(6.7.8.9)(96.97.98.99}pd(mod10)126{(1.2.3.4)(6.7.8.9)(96.97.98.99}d(mod10)126(4)20d(mod10)[Eachbracket4(mod10)Totalbrackets=20]24026d(mod10)d234(mod10)Verifythat:246(mod10(24)8686(mod10)232.226.224(mod10)2344(mod10)Henced2344(mod10)d4(mod10)\boldsymbolWrong\boldsymbollogic!\boldsymbolAccedently\boldsymbolcorrect\boldsymbolanswer!\boldsymbolI\boldsymbolll\boldsymboltry\boldsymbolto\boldsymbolcorrect\boldsymbolmy\boldsymbollogic.\boldsymbolPlease\boldsymbolstay\boldsymbolwith\boldsymbolme!
Answered by RasheedSoomro last updated on 11/Jun/17
According to Corrected Logic.  Right logic &  Right answer    Expansion of 100! have 24   0′s in the right.  Let p=((100!)/(10^(24) ))  p has no zero from right.  First non-zero digit in 100!                      =unit digit in p         d≡p(mod 10)  p=((100!)/(10^(24) ))=((100!)/(2^(24) ×5^(24) ))      =((100!)/(2^(24) ×(5×((10)/2)×((15)/3)×((20)/2^2 )×5^2 ×...×((100)/2^2 ))))      =((100!)/(2^(24) ×(((5.10.15.....100)/(2^(18) ×3^8 ×7^2 ×11×13×17×19)))))     =3^8 ×7^2 ×11×13×17×19×((100!)/(2^6 (5.10....100)))   =3^8 ×7^2 ×11×13×17×19{(((1...4)/2))(6...9)(11...14)(((16....19)/2))}          ×...×{(81....84)(86...89)(91...94)(((96...99)/2))}           Number of red bracket=   1           Number of black brackets=   14   3 per each  20 except first.           Number of blue brackets=   5    1 per each  20  We can verify/prove the following congruences  3^8 ≡1(mod 10)  7^2 ≡9(mod 10)  11≡1(mod 10)  13≡3(mod 10)  17≡7(mod 10)  19≡9(mod 10)  ((1.2.3.4)/2)≡2  Any of Black-bracket≡4(mod 10)    [14 congruences]  Any of Blue-bracket≡2(mod 10)    [ 5 congruences]    Multiplying all above congruences  p≡1.9.1.3.7.9.2.4^(14) .2^5 (mod 10)  p≡1.9.1.3.7.9.2.6.2(mod 10)   [∵4^(even) ≡6(mod 10]  p≡40824≡4(mod 10)   [∵4^(even) ≡6(mod 10]
AccordingtoCorrectedLogic.Rightlogic&RightanswerExpansionof100!have240sintheright.Letp=100!1024phasnozerofromright.Firstnonzerodigitin100!=unitdigitinpdp(mod10)p=100!1024=100!224×524=100!224×(5×102×153×2022×52××10022)=100!224×(5.10.15..100218×38×72×11×13×17×19)=38×72×11×13×17×19×100!26(5.10.100)=38×72×11×13×17×19{(142)(69)(1114)(16.192)}××{(81.84)(8689)(9194)(96992)}Numberofredbracket=1Numberofblackbrackets=143pereach20exceptfirst.Numberofbluebrackets=51pereach20Wecanverify/provethefollowingcongruences381(mod10)729(mod10)111(mod10)133(mod10)177(mod10)199(mod10)1.2.3.422Anyof\boldsymbolBlack\boldsymbolbracket4(mod10)[14congruences]Anyof\boldsymbolBlue\boldsymbolbracket2(mod10)[5congruences]Multiplyingallabovecongruencesp1.9.1.3.7.9.2.414.25(mod10)p1.9.1.3.7.9.2.6.2(mod10)[4even6(mod10]p408244(mod10)[4even6(mod10]

Leave a Reply

Your email address will not be published. Required fields are marked *