Menu Close

lim-0-2-e-x-x-dx-




Question Number 90306 by Tony Lin last updated on 22/Apr/20
lim_(λ→0) ∫_λ ^(2λ)  (e^(−x) /x)dx
$$\underset{\lambda\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{−{x}} }{{x}}{dx} \\ $$
Commented by mathmax by abdo last updated on 22/Apr/20
∃ c∈]λ,2λ[ /   ∫_λ ^(2λ)  (e^(−x) /x)dx =e^(−c)  ∫_λ ^(2λ)  (dx/x) =e^(−c) ln∣((2λ)/λ)∣=e^(−c) ln(2)  λ→0 ⇒c→0 ⇒lim_(λ→0)    ∫_λ ^(2λ)  (e^(−x) /x)dx =ln(2)
$$\left.\exists\:{c}\in\right]\lambda,\mathrm{2}\lambda\left[\:/\:\:\:\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{−{x}} }{{x}}{dx}\:={e}^{−{c}} \:\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{dx}}{{x}}\:={e}^{−{c}} {ln}\mid\frac{\mathrm{2}\lambda}{\lambda}\mid={e}^{−{c}} {ln}\left(\mathrm{2}\right)\right. \\ $$$$\lambda\rightarrow\mathrm{0}\:\Rightarrow{c}\rightarrow\mathrm{0}\:\Rightarrow{lim}_{\lambda\rightarrow\mathrm{0}} \:\:\:\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{−{x}} }{{x}}{dx}\:={ln}\left(\mathrm{2}\right) \\ $$
Commented by Tony Lin last updated on 23/Apr/20
thanks sir
$${thanks}\:{sir} \\ $$
Answered by TANMAY PANACEA. last updated on 22/Apr/20
∫_λ ^(2λ) (e^(−x) /x)dx=∫_λ ^(2λ) (1/x)(1−x+(x^2 /(2!))−(x^3 /(3!))+(x^4 /(4!))+..)dx  =∫_κ ^(2λ) ((1/x)−1+(x/(2!))−(x^2 /(3!))+(x^3 /(4!))+..)dx  =∣lnx−x+(x^2 /(2×2!))−(x^3 /(3×3!))+..∣_λ ^(2λ)   =ln2−∣x−(x^2 /(2×2!))+(x^3 /(3×3!))−..∣_λ ^(2λ)   =ln2−[(λ)−((3λ^2 )/(2×2!))+((7λ^3 )/(3×3!))−..]  so when λ→0  answer is ln2
$$\int_{\lambda} ^{\mathrm{2}\lambda} \frac{{e}^{−{x}} }{{x}}{dx}=\int_{\lambda} ^{\mathrm{2}\lambda} \frac{\mathrm{1}}{{x}}\left(\mathrm{1}−{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}+..\right){dx} \\ $$$$=\int_{\kappa} ^{\mathrm{2}\lambda} \left(\frac{\mathrm{1}}{{x}}−\mathrm{1}+\frac{{x}}{\mathrm{2}!}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{4}!}+..\right){dx} \\ $$$$=\mid{lnx}−{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}!}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}×\mathrm{3}!}+..\mid_{\lambda} ^{\mathrm{2}\lambda} \\ $$$$={ln}\mathrm{2}−\mid{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}×\mathrm{3}!}−..\mid_{\lambda} ^{\mathrm{2}\lambda} \\ $$$$={ln}\mathrm{2}−\left[\left(\lambda\right)−\frac{\mathrm{3}\lambda^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}!}+\frac{\mathrm{7}\lambda^{\mathrm{3}} }{\mathrm{3}×\mathrm{3}!}−..\right] \\ $$$${so}\:{when}\:\lambda\rightarrow\mathrm{0} \\ $$$${answer}\:{is}\:{ln}\mathrm{2} \\ $$
Commented by peter frank last updated on 22/Apr/20
thank you
$${thank}\:{you} \\ $$
Commented by Tony Lin last updated on 23/Apr/20
thanks sir
$${thanks}\:{sir} \\ $$
Commented by TANMAY PANACEA. last updated on 23/Apr/20
most welcome sir
$${most}\:{welcome}\:{sir} \\ $$
Answered by maths mind last updated on 22/Apr/20
(e^(−x) /x)=((1+e^(−x) −1)/x)  lim_(a→0) ∫_a ^(2a) ((1+e^(−x) −1)/x)dx=lim_(a→0) ∫_a ^(2a) (1/x)dx+lim_(a→0) ∫_a ^(2a) ((e^(−x) −1)/x)dx  lim_(a→0) ∫_a ^(2a) ((e^(−x) −1)/x)dx=0  e^(−x) −1=−x.e^(−c)   mean value  ⇒∣((e^(−x) −1)/x)∣≤e^(−a)   ⇒∣∫_a ^(2a) ((e^(−x) −1)/x)dx∣≤∫_a ^(2a) ∣((e^(−x) −1)/x)∣dx≤∫_a ^(2a) e^(−a) dx=ae^(−a) →0  ⇒lim_(a→0) ∫_a ^(2a) ((e^(−x) −1)/x)dx=0⇒  lim_(a→0) ∫_a ^(2a) (e^(−x) /x)dx=ln(2)
$$\frac{{e}^{−{x}} }{{x}}=\frac{\mathrm{1}+{e}^{−{x}} −\mathrm{1}}{{x}} \\ $$$$\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{\mathrm{1}+{e}^{−{x}} −\mathrm{1}}{{x}}{dx}=\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{\mathrm{1}}{{x}}{dx}+\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{{e}^{−{x}} −\mathrm{1}}{{x}}{dx} \\ $$$$\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{{e}^{−{x}} −\mathrm{1}}{{x}}{dx}=\mathrm{0} \\ $$$${e}^{−{x}} −\mathrm{1}=−{x}.{e}^{−{c}} \:\:{mean}\:{value} \\ $$$$\Rightarrow\mid\frac{{e}^{−{x}} −\mathrm{1}}{{x}}\mid\leqslant{e}^{−{a}} \\ $$$$\Rightarrow\mid\int_{{a}} ^{\mathrm{2}{a}} \frac{{e}^{−{x}} −\mathrm{1}}{{x}}{dx}\mid\leqslant\int_{{a}} ^{\mathrm{2}{a}} \mid\frac{{e}^{−{x}} −\mathrm{1}}{{x}}\mid{dx}\leqslant\int_{{a}} ^{\mathrm{2}{a}} {e}^{−{a}} {dx}={ae}^{−{a}} \rightarrow\mathrm{0} \\ $$$$\Rightarrow\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{{e}^{−{x}} −\mathrm{1}}{{x}}{dx}=\mathrm{0}\Rightarrow \\ $$$$\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{{a}} ^{\mathrm{2}{a}} \frac{{e}^{−{x}} }{{x}}{dx}={ln}\left(\mathrm{2}\right) \\ $$
Commented by peter frank last updated on 22/Apr/20
help QN  90240
$${help}\:{QN}\:\:\mathrm{90240} \\ $$
Commented by Tony Lin last updated on 23/Apr/20
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *