Menu Close

lim-1-1-e-




Question Number 53647 by Tawa1 last updated on 24/Jan/19
lim_(π›—β†’βˆž)   (1 + (1/Ο†))^Ο†   =  e
limΟ•β†’βˆž(1+1Ο•)Ο•=e
Commented by maxmathsup by imad last updated on 24/Jan/19
we have (1+(1/x))^x  =e^(xln(1+(1/x)))   but  ln(1+(1/x))∼(1/x)  (xβ†’+∞) β‡’  xln(1+(1/x))∼ 1 β‡’lim_(xβ†’+∞) (1+(1/x))^x =e .
wehave(1+1x)x=exln(1+1x)butln(1+1x)∼1x(xβ†’+∞)β‡’xln(1+1x)∼1β‡’limxβ†’+∞(1+1x)x=e.
Commented by Tawa1 last updated on 24/Jan/19
God bless you sir
Godblessyousir
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Jan/19
t=(1/φ)  lim_(t→0) (1+t)^(1/t) =y(say)  lim_(t→0) ((ln(1+t))/t)=1=lny  lny=1 so y=e^1 =e
t=1ϕlimt→0(1+t)1t=y(say)limt→0ln(1+t)t=1=lnylny=1soy=e1=e
Commented by Tawa1 last updated on 24/Jan/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *