Menu Close

lim-a-x-1-b-x-1-c-x-1-a-b-c-1-x-x-0-




Question Number 127358 by Fareed last updated on 29/Dec/20
  lim(((a^(x+1) +b^(x+1) +c^(x+1) )/(a+b+c)))^(1/x) =?  x⇒0
lim(ax+1+bx+1+cx+1a+b+c)1x=?x0
Answered by Ar Brandon last updated on 29/Dec/20
Ψ=lim_(x→0) (((a^(x+1) +b^(x+1) +c^(x+1) )/(a+b+c)))^(1/x)   lnΨ=lim_(x→0) (1/x)ln(((a^(x+1) +b^(x+1) +c^(x+1) )/(a+b+c)))=(1/0)ln(((a+b+c)/(a+b+c)))=(0/0)          =lim_(x→0) {((a^(x+1) lna+b^(x+1) lnb+c^(x+1) lnc)/(a+b+c))∙((a+b+c)/(a^(x+1) +b^(x+1) +c^(x+1) ))}          =((alna+blnb+clnc)/(a+b+c))       Ψ=e^((alna+blnb+clnc)/(a+b+c))
Ψ=limx0(ax+1+bx+1+cx+1a+b+c)1xlnΨ=limx01xln(ax+1+bx+1+cx+1a+b+c)=10ln(a+b+ca+b+c)=00=limx0{ax+1lna+bx+1lnb+cx+1lnca+b+ca+b+cax+1+bx+1+cx+1}=alna+blnb+clnca+b+cΨ=ealna+blnb+clnca+b+c
Commented by Study last updated on 29/Dec/20
whear is the (1/x)  dirivation???
whearisthe1xdirivation???
Commented by Study last updated on 29/Dec/20
??????
??????
Commented by Ar Brandon last updated on 29/Dec/20
lim_(x→0) ((f(x))/(g(x)))=(0/0) ⇒ lim_(x→0) ((f(x))/(g(x)))=lim_(x→0) ((f ′(x))/(g′(x)))  lim_(x→0) (1/x)ln(((a^(x+1) +b^(x+1) +c^(x+1) )/(a+b+c)))=lim_(x→0) ((ln′(((a^(x+1) +b^(x+1) +c^(x+1) )/(a+b+c))))/(x′))
limx0f(x)g(x)=00limx0f(x)g(x)=limx0f(x)g(x)limx01xln(ax+1+bx+1+cx+1a+b+c)=limx0ln(ax+1+bx+1+cx+1a+b+c)x

Leave a Reply

Your email address will not be published. Required fields are marked *