Menu Close

lim-h-0-e-h-1-h-find-the-limit-above-




Question Number 180413 by Mastermind last updated on 12/Nov/22
lim_(h→0) (((e^h −1)/h))    find the limit above
$$\mathrm{li}\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{m}}\left(\frac{\mathrm{e}^{\mathrm{h}} −\mathrm{1}}{\mathrm{h}}\right) \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{above} \\ $$
Answered by Frix last updated on 12/Nov/22
=lim_(x→0)  (e^x /1) =1     (l′Ho^� pital)
$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{e}^{{x}} }{\mathrm{1}}\:=\mathrm{1}\:\:\:\:\:\left(\mathrm{l}'\mathrm{H}\hat {\mathrm{o}pital}\right) \\ $$
Answered by mr W last updated on 12/Nov/22
=lim_(h→0) ((e^h −e^0 )/h)  =((de^x /dx))∣_(x=0)   =(e^x )∣_(x=0)   =1
$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{h}} −{e}^{\mathrm{0}} }{{h}} \\ $$$$=\left(\frac{{de}^{{x}} }{{dx}}\right)\mid_{{x}=\mathrm{0}} \\ $$$$=\left({e}^{{x}} \right)\mid_{{x}=\mathrm{0}} \\ $$$$=\mathrm{1} \\ $$
Commented by Frix last updated on 12/Nov/22
yes!
$$\mathrm{yes}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *