Menu Close

lim-n-0-1-x-n-e-x-n-cos-x-dx-




Question Number 55373 by gunawan last updated on 23/Feb/19
lim_(n→∝)  ∫_0 ^1 ((x^n e^x^n  )/(cos x)) dx=...
$$\underset{{n}\rightarrow\propto} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} {e}^{{x}^{{n}} } }{\mathrm{cos}\:{x}}\:{dx}=… \\ $$
Commented by turbo msup by abdo last updated on 23/Feb/19
let I_n =∫_0 ^1   ((x^n e^x^n  )/(cosx))dx ⇒  I_n =∫_R   ((x^n  e^x^n  )/(cosx)) χ_([0,1]) (x)dx  but lim_(n→+∞)   ((x^n  e^x^n  )/(cosx)) χ_([0,1]) (x)=0 ⇒  lim_(n→+∞)  I_n =0 .
$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{n}} {e}^{{x}^{{n}} } }{{cosx}}{dx}\:\Rightarrow \\ $$$${I}_{{n}} =\int_{{R}} \:\:\frac{{x}^{{n}} \:{e}^{{x}^{{n}} } }{{cosx}}\:\chi_{\left[\mathrm{0},\mathrm{1}\right]} \left({x}\right){dx} \\ $$$${but}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{x}^{{n}} \:{e}^{{x}^{{n}} } }{{cosx}}\:\chi_{\left[\mathrm{0},\mathrm{1}\right]} \left({x}\right)=\mathrm{0}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} =\mathrm{0}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Feb/19
f(x)=((x^n e^x^n  )/(cosx))  f(0)=0    f(1)=(e/(cos1))  let [f(x)]_(max) =M  when   x[0,1]  [f(x)]_(min) =m   when x[0,1]        M>f(x)>m  ∫_0 ^1 Mdx>∫_0 ^1 f(x)dx>∫_0 ^1 mdx  M>∫_0 ^1 f(x)dx>m  f(x)=((x^n e^x^n  )/(cosx))  1)cosx≠0 in x [0,1]  2)as n→∞ e^x^n  →1(attaching graph)  3)as n→∞  x^n →0  so lim_(n→∞)  ∫_0 ^1 ((x^n e^x^n  )/(cosx))dx→0
$${f}\left({x}\right)=\frac{{x}^{{n}} {e}^{{x}^{{n}} } }{{cosx}} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}\:\:\:\:{f}\left(\mathrm{1}\right)=\frac{{e}}{{cos}\mathrm{1}} \\ $$$${let}\:\left[{f}\left({x}\right)\right]_{{max}} ={M}\:\:{when}\:\:\:{x}\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left[{f}\left({x}\right)\right]_{{min}} ={m}\:\:\:{when}\:{x}\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\:\:\:\:\:\:{M}>{f}\left({x}\right)>{m} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {Mdx}>\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}>\int_{\mathrm{0}} ^{\mathrm{1}} {mdx} \\ $$$${M}>\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}>{m} \\ $$$${f}\left({x}\right)=\frac{{x}^{{n}} {e}^{{x}^{{n}} } }{{cosx}} \\ $$$$\left.\mathrm{1}\right){cosx}\neq\mathrm{0}\:{in}\:{x}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{2}\right){as}\:{n}\rightarrow\infty\:{e}^{{x}^{{n}} } \rightarrow\mathrm{1}\left({attaching}\:{graph}\right) \\ $$$$\left.\mathrm{3}\right){as}\:{n}\rightarrow\infty\:\:{x}^{{n}} \rightarrow\mathrm{0} \\ $$$${so}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} {e}^{{x}^{{n}} } }{{cosx}}{dx}\rightarrow\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *