Question Number 125394 by Mammadli last updated on 10/Dec/20
$$\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{lim}}}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{5}}{\mathrm{2}^{\mathrm{3}} }+…+\frac{\mathrm{2}\boldsymbol{{n}}−\mathrm{1}}{\mathrm{2}^{\boldsymbol{{n}}} }\right)=? \\ $$
Answered by Dwaipayan Shikari last updated on 10/Dec/20
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}^{{n}} }=\overset{\infty} {\sum}\frac{{n}}{\mathrm{2}^{{n}−\mathrm{1}} }−\overset{\infty} {\sum}\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$$\overset{\infty} {\sum}\frac{{n}}{\mathrm{2}^{{n}−\mathrm{1}} }=\mathrm{1}+\frac{\mathrm{2}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{4}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{5}}{\mathrm{2}^{\mathrm{4}} }+..={S} \\ $$$${S}−\frac{{S}}{\mathrm{2}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+..\Rightarrow\frac{{S}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}\Rightarrow{S}=\mathrm{4} \\ $$$$\overset{\infty} {\sum}\frac{\mathrm{1}}{\mathrm{2}^{{n}} }=\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}=\mathrm{1} \\ $$$$\overset{\infty} {\sum}\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}^{{n}} }=\mathrm{4}−\mathrm{1}=\mathrm{3} \\ $$