Menu Close

lim-n-1-c-1-1-n-n-with-0-c-1-gt-0-




Question Number 54566 by mr W last updated on 06/Feb/19
lim_(n→∞)  (((1+c)/(1+μ^(1/n) )))^n =?  with 0≤c≤1, μ>0
limn(1+c1+μ1n)n=?with0c1,μ>0
Commented by maxmathsup by imad last updated on 06/Feb/19
let A_n =(((1+e)/(1+μ^(1/n) )))^n  ⇒  A_n =(((1+e +μ^(1/n) −μ^(1/n) )/(1+μ^(1/n) )))^n  =(1+((e−μ^(1/n) )/(1+μ^(1/n) )))^n   =e^(nln(1+((e−μ^(1/n) )/(1+μ^(1/n) )))    but  μ^(1/n)  =e^((ln(μ))/n)    ∼1+((ln(μ))/n))  ⇒e−μ^(1/n)  ∼e−1−((ln(μ))/n)  and  1+μ^(1/n)  =2 +((ln(μ))/n) ⇒ 1+((e−μ^(1/n) )/(1+μ^(1/n) )) ∼ 1 +((e−1)/2) =((1+e)/2) ⇒A_n ∼e^(nln(((1+e)/2)))  →+∞(n→+∞)  (look that ln(((1+e)/2))>0 )  we consider μ and e fixed ..
letAn=(1+e1+μ1n)nAn=(1+e+μ1nμ1n1+μ1n)n=(1+eμ1n1+μ1n)n=enln(1+eμ1n1+μ1n)butμ1n=eln(μ)n1+ln(μ)neμ1ne1ln(μ)nand1+μ1n=2+ln(μ)n1+eμ1n1+μ1n1+e12=1+e2Anenln(1+e2)+(n+)(lookthatln(1+e2)>0)weconsiderμandefixed..
Commented by mr W last updated on 06/Feb/19
thank you sir!  c≤1  therefore ln (((1+c)/2))≤0  it seems if c<1, (((1+e)/(1+μ^(1/n) )))^n →0  what if c=1?, i.e. ((2/(1+μ^(1/n) )))^n →?
thankyousir!c1thereforeln(1+c2)0itseemsifc<1,(1+e1+μ1n)n0whatifc=1?,i.e.(21+μ1n)n?
Commented by maxmathsup by imad last updated on 06/Feb/19
you are right sir  i have commited a error  of calculus we have   0<e<1 ⇒1<1+e<2 ⇒(1/2)<((1+e)/2)<1 ⇒ln(((1+e)/2))<0 ⇒lim_(n→+∞)    A_n =0   forgive me i was tired...
youarerightsirihavecommitedaerrorofcalculuswehave0<e<11<1+e<212<1+e2<1ln(1+e2)<0limn+An=0forgivemeiwastired

Leave a Reply

Your email address will not be published. Required fields are marked *