Question Number 161133 by qaz last updated on 12/Dec/21
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\mathrm{x}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{n}}\right)}=? \\ $$
Answered by ArielVyny last updated on 12/Dec/21
$$\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{{x}\left({x}+\frac{\mathrm{1}}{{n}}\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}}{{n}}\right)}{dx} \\ $$$$=\left[{ln}\left({x}\right)−{ln}\left({x}+\frac{\mathrm{1}}{{n}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\left[{ln}\frac{{x}}{{x}+\frac{\mathrm{1}}{{n}}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{0} \\ $$$${lim}_{{n}\rightarrow\infty} =\:\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{{x}\left({x}+\frac{\mathrm{1}}{{n}}\right)}=\mathrm{0} \\ $$$$ \\ $$
Commented by mr W last updated on 12/Dec/21
$${how}\:\left[{ln}\frac{{x}}{{x}+\frac{\mathrm{1}}{{n}}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{0}\:? \\ $$