Menu Close

lim-n-1-n-2-1-2-n-2-1-n-1-n-2-1-




Question Number 157883 by HongKing last updated on 29/Oct/21
lim_(n→∞) ((1/(n^2 +1)) + (2/(n^2 +1)) + ... + ((n-1)/(n^2 +1))) = ?
limn(1n2+1+2n2+1++n1n2+1)=?
Answered by puissant last updated on 29/Oct/21
S=lim_(n→∞) ((1/(n^2 +1))+(2/(n^2 +1))+...+((n−1)/(n^2 +1)))  = lim_(n→∞) (1/(n^2 +1)) Σ_(k=1) ^(n−1) k =lim_(n→∞)  (((n−1)n)/(2(n^2 +1)))  = (1/2)lim_(n→∞) ((n^2 (1−(1/n)))/(n^2 (1+(1/n^2 )))) =(1/2)lim_(n→∞) (({1−(1/n)})/({1+(1/n^2 )}))= (1/2)..                      ............Le puissant...........
S=limn(1n2+1+2n2+1++n1n2+1)=limn1n2+1n1k=1k=limn(n1)n2(n2+1)=12limnn2(11n)n2(1+1n2)=12limn{11n}{1+1n2}=12..Lepuissant..
Commented by Tawa11 last updated on 29/Oct/21
Great sir
Greatsir
Commented by HongKing last updated on 29/Oct/21
alot thanks sir
alotthankssir

Leave a Reply

Your email address will not be published. Required fields are marked *