Menu Close

lim-n-1-n-2-1-2-n-2-2-3-n-2-3-1-n-1-




Question Number 39443 by rahul 19 last updated on 06/Jul/18
lim_(n→∞)  [ (1/(n^2 +1))+ (2/(n^2 +2))+ (3/(n^2 +3))+ ....+(1/(n+1))] = ?
limn[1n2+1+2n2+2+3n2+3+.+1n+1]=?
Commented by tanmay.chaudhury50@gmail.com last updated on 06/Jul/18
very good...this is the way to solve it...
verygoodthisisthewaytosolveit
Commented by math khazana by abdo last updated on 06/Jul/18
S_n =Σ_(k=1) ^n   (k/(n^2  +k))  we have       1≤k≤n ⇒  1+n^2 ≤n^2 +k≤n^2  +n ⇒ (1/(n^2  +n)) ≤ (1/(n^2  +k)) ≤ (1/(1+n^2 ))  ⇒ Σ_(k=1) ^n  (k/(n^2 +n)) ≤ Σ_(k=1) ^n  (k/(n^2 +k)) ≤ Σ_(k=1) ^n  (k/(n^2  +1)) ⇒  (1/(n^2  +n)) ((n^2  +n)/2) ≤ S_n  ≤ (1/(n^2 +1)) ((n^2  +n)/2) ⇒  (1/2) ≤ S_n  ≤  ((n^2  +n)/(2(n^2 +1))) ⇒lim_(n→+∞)  S_n =(1/2) .
Sn=k=1nkn2+kwehave1kn1+n2n2+kn2+n1n2+n1n2+k11+n2k=1nkn2+nk=1nkn2+kk=1nkn2+11n2+nn2+n2Sn1n2+1n2+n212Snn2+n2(n2+1)limn+Sn=12.
Commented by abdo mathsup 649 cc last updated on 07/Jul/18
thanks.
thanks.
Answered by ajfour last updated on 06/Jul/18
Let n^2 =N  L=lim_(N→∞) NΣ_(r=1) ^(√N)  (((r/N)((1/N)))/(1+(r/N)))     =lim_(N→∞) N∫_0 ^(  1/(√N))  ((xdx)/(1+x))    =lim_(N→∞) N[(1/( (√N)))−ln (1+(1/( (√N))))]    =lim_(N→∞)  N[(1/( (√N)))−(1/( (√N)))+(1/(2N))−....]  ⇒     L = (1/2) .
Letn2=NL=limNNNr=1(r/N)(1N)1+rN=limNN01/Nxdx1+x=limNN[1Nln(1+1N)]=limNN[1N1N+12N.]L=12.
Commented by rahul 19 last updated on 06/Jul/18
Ans. given is 1/2

Leave a Reply

Your email address will not be published. Required fields are marked *