Menu Close

lim-n-1-n-2-1-2-n-2-2-3-n-2-3-1-n-1-




Question Number 39443 by rahul 19 last updated on 06/Jul/18
lim_(n→∞)  [ (1/(n^2 +1))+ (2/(n^2 +2))+ (3/(n^2 +3))+ ....+(1/(n+1))] = ?
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}+\:\frac{\mathrm{2}}{\mathrm{n}^{\mathrm{2}} +\mathrm{2}}+\:\frac{\mathrm{3}}{\mathrm{n}^{\mathrm{2}} +\mathrm{3}}+\:….+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right]\:=\:? \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 06/Jul/18
very good...this is the way to solve it...
$${very}\:{good}…{this}\:{is}\:{the}\:{way}\:{to}\:{solve}\:{it}… \\ $$
Commented by math khazana by abdo last updated on 06/Jul/18
S_n =Σ_(k=1) ^n   (k/(n^2  +k))  we have       1≤k≤n ⇒  1+n^2 ≤n^2 +k≤n^2  +n ⇒ (1/(n^2  +n)) ≤ (1/(n^2  +k)) ≤ (1/(1+n^2 ))  ⇒ Σ_(k=1) ^n  (k/(n^2 +n)) ≤ Σ_(k=1) ^n  (k/(n^2 +k)) ≤ Σ_(k=1) ^n  (k/(n^2  +1)) ⇒  (1/(n^2  +n)) ((n^2  +n)/2) ≤ S_n  ≤ (1/(n^2 +1)) ((n^2  +n)/2) ⇒  (1/2) ≤ S_n  ≤  ((n^2  +n)/(2(n^2 +1))) ⇒lim_(n→+∞)  S_n =(1/2) .
$${S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{k}}{{n}^{\mathrm{2}} \:+{k}}\:\:{we}\:{have}\:\:\:\:\:\:\:\mathrm{1}\leqslant{k}\leqslant{n}\:\Rightarrow \\ $$$$\mathrm{1}+{n}^{\mathrm{2}} \leqslant{n}^{\mathrm{2}} +{k}\leqslant{n}^{\mathrm{2}} \:+{n}\:\Rightarrow\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{n}}\:\leqslant\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{k}}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{1}+{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}}{{n}^{\mathrm{2}} +{n}}\:\leqslant\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}}{{n}^{\mathrm{2}} +{k}}\:\leqslant\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}}{{n}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{n}}\:\frac{{n}^{\mathrm{2}} \:+{n}}{\mathrm{2}}\:\leqslant\:{S}_{{n}} \:\leqslant\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}}\:\frac{{n}^{\mathrm{2}} \:+{n}}{\mathrm{2}}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:\leqslant\:{S}_{{n}} \:\leqslant\:\:\frac{{n}^{\mathrm{2}} \:+{n}}{\mathrm{2}\left({n}^{\mathrm{2}} +\mathrm{1}\right)}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 07/Jul/18
thanks.
$${thanks}. \\ $$
Answered by ajfour last updated on 06/Jul/18
Let n^2 =N  L=lim_(N→∞) NΣ_(r=1) ^(√N)  (((r/N)((1/N)))/(1+(r/N)))     =lim_(N→∞) N∫_0 ^(  1/(√N))  ((xdx)/(1+x))    =lim_(N→∞) N[(1/( (√N)))−ln (1+(1/( (√N))))]    =lim_(N→∞)  N[(1/( (√N)))−(1/( (√N)))+(1/(2N))−....]  ⇒     L = (1/2) .
$${Let}\:{n}^{\mathrm{2}} ={N} \\ $$$${L}=\underset{{N}\rightarrow\infty} {\mathrm{lim}}{N}\underset{{r}=\mathrm{1}} {\overset{\sqrt{{N}}} {\sum}}\:\frac{\left({r}/{N}\right)\left(\frac{\mathrm{1}}{{N}}\right)}{\mathrm{1}+\frac{{r}}{{N}}} \\ $$$$\:\:\:=\underset{{N}\rightarrow\infty} {\mathrm{lim}}{N}\int_{\mathrm{0}} ^{\:\:\mathrm{1}/\sqrt{{N}}} \:\frac{{xdx}}{\mathrm{1}+{x}} \\ $$$$\:\:=\underset{{N}\rightarrow\infty} {\mathrm{lim}}{N}\left[\frac{\mathrm{1}}{\:\sqrt{{N}}}−\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{{N}}}\right)\right] \\ $$$$\:\:=\underset{{N}\rightarrow\infty} {\mathrm{lim}}\:{N}\left[\frac{\mathrm{1}}{\:\sqrt{{N}}}−\frac{\mathrm{1}}{\:\sqrt{{N}}}+\frac{\mathrm{1}}{\mathrm{2}{N}}−….\right] \\ $$$$\Rightarrow\:\:\:\:\:{L}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$
Commented by rahul 19 last updated on 06/Jul/18
Ans. given is 1/2

Leave a Reply

Your email address will not be published. Required fields are marked *