Question Number 39443 by rahul 19 last updated on 06/Jul/18
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}+\:\frac{\mathrm{2}}{\mathrm{n}^{\mathrm{2}} +\mathrm{2}}+\:\frac{\mathrm{3}}{\mathrm{n}^{\mathrm{2}} +\mathrm{3}}+\:….+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right]\:=\:? \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 06/Jul/18
$${very}\:{good}…{this}\:{is}\:{the}\:{way}\:{to}\:{solve}\:{it}… \\ $$
Commented by math khazana by abdo last updated on 06/Jul/18
$${S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{{k}}{{n}^{\mathrm{2}} \:+{k}}\:\:{we}\:{have}\:\:\:\:\:\:\:\mathrm{1}\leqslant{k}\leqslant{n}\:\Rightarrow \\ $$$$\mathrm{1}+{n}^{\mathrm{2}} \leqslant{n}^{\mathrm{2}} +{k}\leqslant{n}^{\mathrm{2}} \:+{n}\:\Rightarrow\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{n}}\:\leqslant\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{k}}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{1}+{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}}{{n}^{\mathrm{2}} +{n}}\:\leqslant\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}}{{n}^{\mathrm{2}} +{k}}\:\leqslant\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}}{{n}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{n}}\:\frac{{n}^{\mathrm{2}} \:+{n}}{\mathrm{2}}\:\leqslant\:{S}_{{n}} \:\leqslant\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}}\:\frac{{n}^{\mathrm{2}} \:+{n}}{\mathrm{2}}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:\leqslant\:{S}_{{n}} \:\leqslant\:\:\frac{{n}^{\mathrm{2}} \:+{n}}{\mathrm{2}\left({n}^{\mathrm{2}} +\mathrm{1}\right)}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 07/Jul/18
$${thanks}. \\ $$
Answered by ajfour last updated on 06/Jul/18
$${Let}\:{n}^{\mathrm{2}} ={N} \\ $$$${L}=\underset{{N}\rightarrow\infty} {\mathrm{lim}}{N}\underset{{r}=\mathrm{1}} {\overset{\sqrt{{N}}} {\sum}}\:\frac{\left({r}/{N}\right)\left(\frac{\mathrm{1}}{{N}}\right)}{\mathrm{1}+\frac{{r}}{{N}}} \\ $$$$\:\:\:=\underset{{N}\rightarrow\infty} {\mathrm{lim}}{N}\int_{\mathrm{0}} ^{\:\:\mathrm{1}/\sqrt{{N}}} \:\frac{{xdx}}{\mathrm{1}+{x}} \\ $$$$\:\:=\underset{{N}\rightarrow\infty} {\mathrm{lim}}{N}\left[\frac{\mathrm{1}}{\:\sqrt{{N}}}−\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{{N}}}\right)\right] \\ $$$$\:\:=\underset{{N}\rightarrow\infty} {\mathrm{lim}}\:{N}\left[\frac{\mathrm{1}}{\:\sqrt{{N}}}−\frac{\mathrm{1}}{\:\sqrt{{N}}}+\frac{\mathrm{1}}{\mathrm{2}{N}}−….\right] \\ $$$$\Rightarrow\:\:\:\:\:{L}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$
Commented by rahul 19 last updated on 06/Jul/18
Ans. given is 1/2