Menu Close

lim-n-3-1-n-8-5-1-n-32-




Question Number 109763 by Karani last updated on 25/Aug/20
lim_(n→∞) ((3/(1−^n (√8)))−(5/(1−^n (√(32)))))=?
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{3}}{\mathrm{1}−^{{n}} \sqrt{\mathrm{8}}}−\frac{\mathrm{5}}{\mathrm{1}−^{{n}} \sqrt{\mathrm{32}}}\right)=? \\ $$
Answered by bemath last updated on 25/Aug/20
   ▽((♭e)/(math))Δ  lim_(n→∞)  ((3−3 ((32))^(1/(n )) −5+5 (8)^(1/n) )/(1−((32))^(1/n) −(8)^(1/n)  +((256))^(1/(n )) )) =  let (1/n) = t  { ((n→∞)),((t→0)) :}  lim_(t→0)  [((−2−3 (32)^t +5 (8)^t )/(1−(32)^t −(8)^t +(256)^t )) ]=  lim_(t→0) [((−2−3(2^t )^5 +5(2^t )^3 )/(1−(2^t )^5 −(2^t )^3 +(2^t )^8 )) ]=  set 2^t = m,m→1  lim_(m→1)  [((5m^3 −3m^5 −2)/(m^8 −m^3 −m^5 +1))]=  L′Hopital  lim_(m→1)  [((15m^2 −15m^4 )/(8m^7 −3m^2 −5m^4 )) ]=  lim_(m→1) [((15−15m^2 )/(8m^5 −3−5m^2 )) ] =  lim_(m→1)  [((−30m)/(40m^4 −10m)) ] = ((−30)/(30))=−1
$$\:\:\:\bigtriangledown\frac{\flat{e}}{{math}}\Delta \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}−\mathrm{3}\:\sqrt[{{n}\:}]{\mathrm{32}}−\mathrm{5}+\mathrm{5}\:\sqrt[{{n}}]{\mathrm{8}}}{\mathrm{1}−\sqrt[{{n}}]{\mathrm{32}}−\sqrt[{{n}}]{\mathrm{8}}\:+\sqrt[{{n}\:}]{\mathrm{256}}}\:= \\ $$$${let}\:\frac{\mathrm{1}}{{n}}\:=\:{t}\:\begin{cases}{{n}\rightarrow\infty}\\{{t}\rightarrow\mathrm{0}}\end{cases} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\frac{−\mathrm{2}−\mathrm{3}\:\left(\mathrm{32}\right)^{{t}} +\mathrm{5}\:\left(\mathrm{8}\right)^{{t}} }{\mathrm{1}−\left(\mathrm{32}\right)^{{t}} −\left(\mathrm{8}\right)^{{t}} +\left(\mathrm{256}\right)^{{t}} }\:\right]= \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{−\mathrm{2}−\mathrm{3}\left(\mathrm{2}^{{t}} \right)^{\mathrm{5}} +\mathrm{5}\left(\mathrm{2}^{{t}} \right)^{\mathrm{3}} }{\mathrm{1}−\left(\mathrm{2}^{{t}} \right)^{\mathrm{5}} −\left(\mathrm{2}^{{t}} \right)^{\mathrm{3}} +\left(\mathrm{2}^{{t}} \right)^{\mathrm{8}} }\:\right]= \\ $$$${set}\:\mathrm{2}^{{t}} =\:{m},{m}\rightarrow\mathrm{1} \\ $$$$\underset{{m}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left[\frac{\mathrm{5}{m}^{\mathrm{3}} −\mathrm{3}{m}^{\mathrm{5}} −\mathrm{2}}{{m}^{\mathrm{8}} −{m}^{\mathrm{3}} −{m}^{\mathrm{5}} +\mathrm{1}}\right]= \\ $$$${L}'{Hopital} \\ $$$$\underset{{m}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left[\frac{\mathrm{15}{m}^{\mathrm{2}} −\mathrm{15}{m}^{\mathrm{4}} }{\mathrm{8}{m}^{\mathrm{7}} −\mathrm{3}{m}^{\mathrm{2}} −\mathrm{5}{m}^{\mathrm{4}} }\:\right]= \\ $$$$\underset{{m}\rightarrow\mathrm{1}} {\mathrm{lim}}\left[\frac{\mathrm{15}−\mathrm{15}{m}^{\mathrm{2}} }{\mathrm{8}{m}^{\mathrm{5}} −\mathrm{3}−\mathrm{5}{m}^{\mathrm{2}} }\:\right]\:= \\ $$$$\underset{{m}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left[\frac{−\mathrm{30}{m}}{\mathrm{40}{m}^{\mathrm{4}} −\mathrm{10}{m}}\:\right]\:=\:\frac{−\mathrm{30}}{\mathrm{30}}=−\mathrm{1} \\ $$
Answered by Her_Majesty last updated on 25/Aug/20
let n=(1/t) with t→0^+   (3/(1−8^t ))−(5/(1−32^t ))=−((3×8^t +6×4^t +4×2^t +2)/((4^t +2^t +1)(16^t +8^t +4^t +2^t +1)))  t=0  −((15)/(3×5))=−1
$${let}\:{n}=\frac{\mathrm{1}}{{t}}\:{with}\:{t}\rightarrow\mathrm{0}^{+} \\ $$$$\frac{\mathrm{3}}{\mathrm{1}−\mathrm{8}^{{t}} }−\frac{\mathrm{5}}{\mathrm{1}−\mathrm{32}^{{t}} }=−\frac{\mathrm{3}×\mathrm{8}^{{t}} +\mathrm{6}×\mathrm{4}^{{t}} +\mathrm{4}×\mathrm{2}^{{t}} +\mathrm{2}}{\left(\mathrm{4}^{{t}} +\mathrm{2}^{{t}} +\mathrm{1}\right)\left(\mathrm{16}^{{t}} +\mathrm{8}^{{t}} +\mathrm{4}^{{t}} +\mathrm{2}^{{t}} +\mathrm{1}\right)} \\ $$$${t}=\mathrm{0} \\ $$$$−\frac{\mathrm{15}}{\mathrm{3}×\mathrm{5}}=−\mathrm{1} \\ $$
Answered by john santu last updated on 25/Aug/20

Leave a Reply

Your email address will not be published. Required fields are marked *