Menu Close

lim-n-4-n-1-cos-2-n-bemath-




Question Number 112083 by bemath last updated on 06/Sep/20
  lim_(n→∞)  4^n  (1−cos ((α/2^n ))) ?     (√(bemath))
$$\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{4}^{{n}} \:\left(\mathrm{1}−\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}^{{n}} }\right)\right)\:?\: \\ $$$$\:\:\sqrt{{bemath}} \\ $$
Answered by bobhans last updated on 06/Sep/20
   lim_(n→∞)  4^n (1−cos ((α/2^n ))) = L  setting (α/2^n ) = r ; 2^n  = (α/r) with r→0  L = lim_(r→0)  α^2 (((1−cos r)/r^2 )) = α^2  lim_(r→0)  ((2sin^2 ((r/2)))/r^2 )  L = (α^2 /2) .
$$\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{4}^{\mathrm{n}} \left(\mathrm{1}−\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}^{\mathrm{n}} }\right)\right)\:=\:\mathrm{L} \\ $$$$\mathrm{setting}\:\frac{\alpha}{\mathrm{2}^{\mathrm{n}} }\:=\:\mathrm{r}\:;\:\mathrm{2}^{\mathrm{n}} \:=\:\frac{\alpha}{\mathrm{r}}\:\mathrm{with}\:\mathrm{r}\rightarrow\mathrm{0} \\ $$$$\mathrm{L}\:=\:\underset{\mathrm{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\alpha^{\mathrm{2}} \left(\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{r}}{\mathrm{r}^{\mathrm{2}} }\right)\:=\:\alpha^{\mathrm{2}} \:\underset{\mathrm{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{r}}{\mathrm{2}}\right)}{\mathrm{r}^{\mathrm{2}} } \\ $$$$\mathrm{L}\:=\:\frac{\alpha^{\mathrm{2}} }{\mathrm{2}}\:. \\ $$
Answered by Dwaipayan Shikari last updated on 06/Sep/20
4^n (2sin^2 (α/2^(n+1) ))=2^(2n+1) ((α/2^(n+1) ))^2 =(α^2 /2)       sin(α/2^n )→(α/2^n )
$$\mathrm{4}^{{n}} \left(\mathrm{2}{sin}^{\mathrm{2}} \frac{\alpha}{\mathrm{2}^{{n}+\mathrm{1}} }\right)=\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} \left(\frac{\alpha}{\mathrm{2}^{{n}+\mathrm{1}} }\right)^{\mathrm{2}} =\frac{\alpha^{\mathrm{2}} }{\mathrm{2}}\:\:\:\:\:\:\:{sin}\frac{\alpha}{\mathrm{2}^{{n}} }\rightarrow\frac{\alpha}{\mathrm{2}^{{n}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *