Menu Close

lim-n-4-n-1-cos-2-n-bemath-




Question Number 112083 by bemath last updated on 06/Sep/20
  lim_(n→∞)  4^n  (1−cos ((α/2^n ))) ?     (√(bemath))
limn4n(1cos(α2n))?bemath
Answered by bobhans last updated on 06/Sep/20
   lim_(n→∞)  4^n (1−cos ((α/2^n ))) = L  setting (α/2^n ) = r ; 2^n  = (α/r) with r→0  L = lim_(r→0)  α^2 (((1−cos r)/r^2 )) = α^2  lim_(r→0)  ((2sin^2 ((r/2)))/r^2 )  L = (α^2 /2) .
limn4n(1cos(α2n))=Lsettingα2n=r;2n=αrwithr0L=limr0α2(1cosrr2)=α2limr02sin2(r2)r2L=α22.
Answered by Dwaipayan Shikari last updated on 06/Sep/20
4^n (2sin^2 (α/2^(n+1) ))=2^(2n+1) ((α/2^(n+1) ))^2 =(α^2 /2)       sin(α/2^n )→(α/2^n )
4n(2sin2α2n+1)=22n+1(α2n+1)2=α22sinα2nα2n

Leave a Reply

Your email address will not be published. Required fields are marked *