Menu Close

lim-n-5-n-7-n-1-n-




Question Number 160875 by cortano last updated on 08/Dec/21
  lim_(n→∞)  ((5^n +7^n ))^(1/n)  =?
$$\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{n}}]{\mathrm{5}^{\mathrm{n}} +\mathrm{7}^{\mathrm{n}} }\:=? \\ $$
Answered by MJS_new last updated on 08/Dec/21
(5^n +7^n )^(1/n) =(((5^n /7^n )+1)7^n )^(1/n) =7(1+((5/7))^n )^(1/n)   lim_(n→∞)  ((5/7))^n =0  ⇒  lim_(n→∞) (5^n +7^n )^(1/n)  =7
$$\left(\mathrm{5}^{{n}} +\mathrm{7}^{{n}} \right)^{\mathrm{1}/{n}} =\left(\left(\frac{\mathrm{5}^{{n}} }{\mathrm{7}^{{n}} }+\mathrm{1}\right)\mathrm{7}^{{n}} \right)^{\mathrm{1}/{n}} =\mathrm{7}\left(\mathrm{1}+\left(\frac{\mathrm{5}}{\mathrm{7}}\right)^{{n}} \right)^{\mathrm{1}/{n}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{5}}{\mathrm{7}}\right)^{\mathrm{n}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{5}^{{n}} +\mathrm{7}^{{n}} \right)^{\mathrm{1}/{n}} \:=\mathrm{7} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *