Menu Close

lim-n-8-n-2-n-1-3-n-2-




Question Number 57850 by Mikael_Marshall last updated on 13/Apr/19
lim_(n→∞)   (8^n /(2^(n+1) +3^(n+2) ))
$$\underset{{n}\rightarrow\infty} {{lim}}\:\:\frac{\mathrm{8}^{{n}} }{\mathrm{2}^{{n}+\mathrm{1}} +\mathrm{3}^{{n}+\mathrm{2}} } \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19
lim_(n→∞)  (8^n /(2×2^n +3^2 ×3^n ))  8^n >3^n >2^n   lim_(n→∞)  (1/(2×((2/8))^n +9×((3/8))^n ))  =(1/(2×0+9×0))  so when n→∞  given limit→∞
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{8}^{{n}} }{\mathrm{2}×\mathrm{2}^{{n}} +\mathrm{3}^{\mathrm{2}} ×\mathrm{3}^{{n}} } \\ $$$$\mathrm{8}^{{n}} >\mathrm{3}^{{n}} >\mathrm{2}^{{n}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2}×\left(\frac{\mathrm{2}}{\mathrm{8}}\right)^{{n}} +\mathrm{9}×\left(\frac{\mathrm{3}}{\mathrm{8}}\right)^{{n}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}×\mathrm{0}+\mathrm{9}×\mathrm{0}} \\ $$$${so}\:{when}\:{n}\rightarrow\infty\:\:{given}\:{limit}\rightarrow\infty \\ $$$$ \\ $$
Commented by Mikael_Marshall last updated on 13/Apr/19
thanks Sir.
$${thanks}\:{Sir}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19
most welcome
$${most}\:{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *