Menu Close

lim-n-a-1-n-b-1-n-2-n-a-b-R-




Question Number 127961 by bramlexs22 last updated on 03/Jan/21
 lim_(n→∞) ((((a)^(1/n)  + (b)^(1/n) )/2) )^n  = ?    a, b ∈R
limn(an+bn2)n=?a,bR
Answered by liberty last updated on 03/Jan/21
 lim_(n→∞)  ((((a)^(1/n)  +(b)^(1/n) )/2))^n  = e^(lim_(n→∞)  ln ( (((a)^(1/n)  +(b)^(1/n)  )/2))^n )    = e^(lim_(x→0^(+ ) ) (((ln (a^x  + b^x  )−ln 2)/x) ))  ; where n=(1/x)   = e^(lim_(x→0^+ ) ( (((ln a).a^x +(ln b).b^x )/(a^x +b^x )) ))    = e^((((ln a+ln b)/2)))  = e^(ln (ab)^(1/2) )  = (ab)^(1/2)  = (√(ab))
limn(an+bn2)n=elimnln(an+bn2)n=elimx0+(ln(ax+bx)ln2x);wheren=1x=elimx0+((lna).ax+(lnb).bxax+bx)=e(lna+lnb2)=eln(ab)12=(ab)12=ab

Leave a Reply

Your email address will not be published. Required fields are marked *