Menu Close

lim-n-e-1-n-e-2-n-e-n-n-n-ho-is-can-you-help-me-step-by-step-




Question Number 110616 by mohammad17 last updated on 29/Aug/20
lim_(n→∞) ((e^(1/n) +e^(2/n) +......+e^(n/n) )/n)   ho is can you help me step by step
$${lim}_{{n}\rightarrow\infty} \frac{{e}^{\frac{\mathrm{1}}{{n}}} +{e}^{\frac{\mathrm{2}}{{n}}} +……+{e}^{\frac{{n}}{{n}}} }{{n}}\: \\ $$$${ho}\:{is}\:{can}\:{you}\:{help}\:{me}\:{step}\:{by}\:{step} \\ $$
Answered by Dwaipayan Shikari last updated on 29/Aug/20
lim_(n→∞) (1/n)Σ_(r=1) ^n e^(r/n)   =∫_0 ^1 e^x dx=e−1
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{\frac{{r}}{{n}}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}} {dx}={e}−\mathrm{1} \\ $$$$ \\ $$
Commented by mohammad17 last updated on 30/Aug/20
sir lim_(n→∞) (1/n)=0⇒Σ_(r=1) ^n e^(r/n) =0
$${sir}\:{lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}=\mathrm{0}\Rightarrow\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{\frac{{r}}{{n}}} =\mathrm{0} \\ $$
Commented by Aziztisffola last updated on 31/Aug/20
Σ_(r=1) ^n e^(r/n) =e^(1/n) +(e^(1/n) )^2 +...+(e^(1/n) )^n               =e^(1/n) (( e−1)/(e^(1/n) −1))=((e−1)/(1−e^((−1)/n) ))
$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{\frac{{r}}{{n}}} ={e}^{\frac{\mathrm{1}}{{n}}} +\left({e}^{\frac{\mathrm{1}}{{n}}} \right)^{\mathrm{2}} +…+\left({e}^{\frac{\mathrm{1}}{{n}}} \right)^{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={e}^{\frac{\mathrm{1}}{{n}}} \frac{\:{e}−\mathrm{1}}{{e}^{\frac{\mathrm{1}}{{n}}} −\mathrm{1}}=\frac{{e}−\mathrm{1}}{\mathrm{1}−{e}^{\frac{−\mathrm{1}}{{n}}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *