Menu Close

lim-n-e-a-n-n-Here-a-R-




Question Number 34951 by rahul 19 last updated on 13/May/18
lim_(n→∞)  (((e×a)/n))^n  = ?   Here aε R^+
limn(e×an)n=?HereaϵR+
Answered by MJS last updated on 14/May/18
ae=p∈R^+   lim_(n→∞) (p^n /n^n )=L  L=lim_(n→∞) (p^n /n^n )=lim_(n→∞) (((d/dn)[p^n ])/((d/dn)[n^n ]))=lim_(n→∞) ((ln(p)×p^n )/((1+ln(n))×n^n ))=  =L×lim_(n→∞) ((ln(p))/(1+ln(n)))=L×0=0
ae=pR+limnpnnn=LL=limnpnnn=limnddn[pn]ddn[nn]=limnln(p)×pn(1+ln(n))×nn==L×limnln(p)1+ln(n)=L×0=0

Leave a Reply

Your email address will not be published. Required fields are marked *