Menu Close

lim-n-k-0-n-k-n-k-k-1-k-1-n-k-




Question Number 192276 by York12 last updated on 13/May/23
lim_(n→∞) (Σ_(k=0) ^n [((k(n−k)!+(k+1))/((k+1)!(n−k)!))])
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left[\frac{{k}\left({n}−{k}\right)!+\left({k}+\mathrm{1}\right)}{\left({k}+\mathrm{1}\right)!\left({n}−{k}\right)!}\right]\right) \\ $$
Answered by witcher3 last updated on 14/May/23
Σ_(k=0) ^n (1/(k!(n−k)!))=(1/(n!))Σ_(k=0) ^n ((n!)/(k!(n−k)!))  =(1/(n!)).Σ_(k=0) ^n C_n ^k =(2^n /(n!))  Σ_(k=0) ^n (((k(n−k)!+(k+1))/((k+1)!(n−k)!)))=Σ(1/(k!))+(1/(k!(n−k)!))  =Σ_(k=0) ^n (1/(k!))+(2^n /(n!))  lim_(n→∞) =e
$$\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}!\left(\mathrm{n}−\mathrm{k}\right)!}=\frac{\mathrm{1}}{\mathrm{n}!}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}!}{\mathrm{k}!\left(\mathrm{n}−\mathrm{k}\right)!} \\ $$$$=\frac{\mathrm{1}}{\mathrm{n}!}.\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} =\frac{\mathrm{2}^{\mathrm{n}} }{\mathrm{n}!} \\ $$$$\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\left(\frac{\mathrm{k}\left(\mathrm{n}−\boldsymbol{\mathrm{k}}\right)!+\left(\mathrm{k}+\mathrm{1}\right)}{\left(\mathrm{k}+\mathrm{1}\right)!\left(\mathrm{n}−\mathrm{k}\right)!}\right)=\Sigma\frac{\mathrm{1}}{\mathrm{k}!}+\frac{\mathrm{1}}{\mathrm{k}!\left(\mathrm{n}−\mathrm{k}\right)!} \\ $$$$=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}!}+\frac{\mathrm{2}^{\mathrm{n}} }{\mathrm{n}!} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}=\mathrm{e} \\ $$$$ \\ $$
Commented by York12 last updated on 20/Aug/23
  lim_(n→∞) (Σ_(k=1) ^n [((k(n−k)!+(k+1))/((k+1)!(n−k)!))]) = lim_(n→∞) (Σ_(k=1) ^n [(k/((k+1)!))+(1/(k!(n−k)!))])  =lim_(n→∞) (Σ_(k=1) ^n [(1/((k!)))−(1/((k+1)!))])+lim_(n→∞) ((2^n /(n!))) = lim_(n→0) (1−(1/((n+1)!))+0)=1  → (That′s it )
$$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\frac{{k}\left({n}−{k}\right)!+\left({k}+\mathrm{1}\right)}{\left({k}+\mathrm{1}\right)!\left({n}−{k}\right)!}\right]\right)\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\frac{{k}}{\left({k}+\mathrm{1}\right)!}+\frac{\mathrm{1}}{\mathrm{k}!\left({n}−{k}\right)!}\right]\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\frac{\mathrm{1}}{\left({k}!\right)}−\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)!}\right]\right)+\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}^{{n}} }{{n}!}\right)\:=\:\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}+\mathrm{0}\right)=\mathrm{1}\:\:\rightarrow\:\left({That}'{s}\:{it}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *