Menu Close

lim-n-k-n-2n-sin-pi-k-




Question Number 166699 by qaz last updated on 25/Feb/22
lim_(n→∞) Σ_(k=n) ^(2n) sin (π/k)=?
limn2nk=nsinπk=?
Answered by mathsmine last updated on 25/Feb/22
 x−(x^3 /6)≤sin(x)≤x......E  Σ_(k=n) ^(2n) (π/k)=Σ_(k=0) ^n (π/(n+k))=(1/n)Σ_(k=0) ^n (π/(1+(k/n)))=S_n   lim_(n→∞) S_n =π∫_0 ^1 (dx/(1+x))=πln(2)  Σ_(k=n) ^(2n) (_ (π/(n+k)))^3 =T_n ≤(n+1)((π/(2n)))^3 =(π^3 /8)((1/n^2 )+(1/n^3 ))  E⇒  S_n −(T_n /6)≤Σ_(k=n) ^(2n) sin((π/k))≤S_n   lim_(n→∞) S_n −(T_n /6)≤lim_(n→∞) Σ_n ^(2n) sin((π/k))≤lim_(n→∞) S_n   lim_(n→∞) Σ_(k=n) ^(2n) sin((π/k))=πln(2)
xx36sin(x)xE2nk=nπk=nk=0πn+k=1nnk=0π1+kn=SnlimnSn=π01dx1+x=πln(2)2nk=n(πn+k)3=Tn(n+1)(π2n)3=π38(1n2+1n3)ESnTn62nk=nsin(πk)SnlimnSnTn6limn2nnsin(πk)limnSnlimn2nk=nsin(πk)=πln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *