Menu Close

lim-n-n-1-n-1-n-n-JS-




Question Number 101822 by john santu last updated on 04/Jul/20
lim_(n→∞) ((φ^(n+1) −(−φ)^(−n−1) )/(φ^n −(−φ)^(−n) )) =   (JS ⊛)
limnϕn+1(ϕ)n1ϕn(ϕ)n=(JS)
Answered by bobhans last updated on 05/Jul/20
φ = (((√5) +1)/2) > 1 ; lim_(n→∞)  (−φ)^(−n) = lim_(n→∞) (1/((−φ)^n )) = 0  Then lim_(n→∞) ((φ^(n+1) −(−φ)^(−n−1) )/(φ^n −(−φ)^(−n) )) = lim_(n→∞) (φ^(n+1) /φ^n ) = φ  = (((√5) +1)/2) (Bob− )
ϕ=5+12>1;limn(ϕ)n=limn1(ϕ)n=0Thenlimnϕn+1(ϕ)n1ϕn(ϕ)n=limnϕn+1ϕn=ϕ=5+12(Bob)

Leave a Reply

Your email address will not be published. Required fields are marked *