Menu Close

lim-n-n-1-n-1-n-n-JS-




Question Number 101822 by john santu last updated on 04/Jul/20
lim_(n→∞) ((φ^(n+1) −(−φ)^(−n−1) )/(φ^n −(−φ)^(−n) )) =   (JS ⊛)
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\phi^{{n}+\mathrm{1}} −\left(−\phi\right)^{−{n}−\mathrm{1}} }{\phi^{{n}} −\left(−\phi\right)^{−{n}} }\:=\: \\ $$$$\left({JS}\:\circledast\right) \\ $$
Answered by bobhans last updated on 05/Jul/20
φ = (((√5) +1)/2) > 1 ; lim_(n→∞)  (−φ)^(−n) = lim_(n→∞) (1/((−φ)^n )) = 0  Then lim_(n→∞) ((φ^(n+1) −(−φ)^(−n−1) )/(φ^n −(−φ)^(−n) )) = lim_(n→∞) (φ^(n+1) /φ^n ) = φ  = (((√5) +1)/2) (Bob− )
$$\phi\:=\:\frac{\sqrt{\mathrm{5}}\:+\mathrm{1}}{\mathrm{2}}\:>\:\mathrm{1}\:;\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(−\phi\right)^{−{n}} =\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\left(−\phi\right)^{{n}} }\:=\:\mathrm{0} \\ $$$${Then}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\phi^{{n}+\mathrm{1}} −\left(−\phi\right)^{−{n}−\mathrm{1}} }{\phi^{{n}} −\left(−\phi\right)^{−{n}} }\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\phi^{{n}+\mathrm{1}} }{\phi^{{n}} }\:=\:\phi \\ $$$$=\:\frac{\sqrt{\mathrm{5}}\:+\mathrm{1}}{\mathrm{2}}\:\left({Bob}− \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *