Question Number 116317 by bemath last updated on 03/Oct/20

Answered by Bird last updated on 03/Oct/20
![U_n =(1/n^(3/2) )Σ_(k=1) ^(n−1) (√(n+k)) =(1/n^(3/2) ).(√n)Σ_(k=1) ^(n−1) (√(1+(k/n))) =(1/n^((3/2)−(1/2)) )Σ_(k=1) ^(n−1) (√(1+(k/n))) =(1/n)Σ_(k=1) ^(n−1) (√(1+(k/n)))→∫_0 ^1 (√(1+x))dx ∫_0 ^1 (√(1+x))dx =_((√(1+x))=t) ∫_1 ^(√2) t(2t)dt =2 ∫_1 ^(√2) t^(2 ) dt =(2/3)[t^3 ]_1 ^(√2) =(2/3){3(√2)−1} =2(√2)−(2/3)](https://www.tinkutara.com/question/Q116320.png)
Commented by john santu last updated on 03/Oct/20

Commented by Bird last updated on 03/Oct/20

Answered by Dwaipayan Shikari last updated on 03/Oct/20
![(1/n)lim_(n→∞) ((√(1+(1/n)))+(√(1+(2/n))) +.....) lim_(n→∞) (1/n)Σ_(k=1) ^n ((√(1+(k/n)))) ∫_0 ^1 (√(1+x)) dx =(2/3)[(1+x)^(3/2) ]_0 ^1 =(2/3)(2(√2)−1)](https://www.tinkutara.com/question/Q116336.png)