Menu Close

lim-n-n-1-n-2-n-3-2n-1-n-3-2-




Question Number 116317 by bemath last updated on 03/Oct/20
  lim_(n→∞)  ((((√(n+1))+(√(n+2))+(√(n+3))+...+(√(2n−1)))/n^(3/2) ) ) =
limn(n+1+n+2+n+3++2n1n32)=
Answered by Bird last updated on 03/Oct/20
U_n  =(1/n^(3/2) )Σ_(k=1) ^(n−1) (√(n+k))  =(1/n^(3/2) ).(√n)Σ_(k=1) ^(n−1) (√(1+(k/n)))  =(1/n^((3/2)−(1/2)) )Σ_(k=1) ^(n−1) (√(1+(k/n)))  =(1/n)Σ_(k=1) ^(n−1) (√(1+(k/n)))→∫_0 ^1 (√(1+x))dx  ∫_0 ^1 (√(1+x))dx =_((√(1+x))=t)   ∫_1 ^(√2) t(2t)dt  =2 ∫_1 ^(√2) t^(2 ) dt =(2/3)[t^3 ]_1 ^(√2)   =(2/3){3(√2)−1} =2(√2)−(2/3)
Un=1n32k=1n1n+k=1n32.nk=1n11+kn=1n3212k=1n11+kn=1nk=1n11+kn011+xdx011+xdx=1+x=t12t(2t)dt=212t2dt=23[t3]12=23{321}=2223
Commented by john santu last updated on 03/Oct/20
typo = (2/3)(2(√2)−1)
typo=23(221)
Commented by Bird last updated on 03/Oct/20
yes thanks john
yesthanksjohn
Answered by Dwaipayan Shikari last updated on 03/Oct/20
(1/n)lim_(n→∞) ((√(1+(1/n)))+(√(1+(2/n)))  +.....)  lim_(n→∞) (1/n)Σ_(k=1) ^n ((√(1+(k/n))))  ∫_0 ^1 (√(1+x)) dx  =(2/3)[(1+x)^(3/2) ]_0 ^1 =(2/3)(2(√2)−1)
1nlimn(1+1n+1+2n+..)limn1nnk=1(1+kn)011+xdx=23[(1+x)32]01=23(221)

Leave a Reply

Your email address will not be published. Required fields are marked *